
1 Introduction to Lagrangian mechanics

Leibnitz and Mautoperie suggested that any motion of a system of particles
always minimizes a functional of action; later Lagrange came up with the exact
definition of that action: the functional that has the Newtonian laws of motion
as its Euler equation or stationarity condition. The question of whether the
action reaches the actual minimum is complicated: Generally, it does not. We
show below that the actual motion of particles reach either a local minimum or a
saddle point of action. The variational formulation permits a regular derivation
of a motion with Newtonian forces as an Euler equation of the action. The vari-
ational principles remain the abstract and economical way to describe Nature,
but one should be careful in proclaiming the ultimate goal of the Universe.

1.1 Stationary Action Principle

Lagrange observed that the second Newton’s law for the motion of a particle,

mẍ = f(x)

can be viewed as the Euler equation to the variational problem

min
x(t)

∫ tf

t0

(T (ẋ)− V (x)) dx

that is:

mẍ+
dV

dx
= 0.

Here, V is the negative of antiderivative (potential) of the force f , and T is the
kinatic energy of the particle

V = −
∫
f(x)dx, T =

1

2
m(ẋ)2

The minimizing quantity – the difference between kinetic and potential en-
ergy – is called action; The Newton equation for a particle is the Euler equation
for the integral of the action.

Example 1.1 (Pendulum) the kinetic energy K of a mass m is K = 1
2mẋ

2,
the potential energy V of a spring is V = 1

2Cx
2, where x(t) is the deflection of the

mass from the equilibrium position, C is is the stiffness of the spring. The action is∫ tf

t0

(
1

2
mẋ2 − 1

2
Cx2

)
dx

The Euler equation mẍ+ Cx = 0 is the equation of pendulum.

In the stated form, the principle applies to any system of free interacting
particles; one only need to specify the forms of kinetic and potential energies to
obtain the Newtonian motion.
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Example 1.2 (Central forces) The problem of celestial mechanics deals with
system bounded by gravitational forces fij acting between any pair of masses mi

and mj and equal to

fij = γ
mimj

|ri − rj |3
(ri − rj)

where vectors ri define coordinates of the masses mi as follows ri = (xi, yi, zj).
The corresponding potential V for the n-masses system is

V = −1

2

N∑
i,j

γ
mimj

|ri − rj |

where γ is Newtonian gravitational constant. The kinetic energy T is the sum of
kinetic energies of the particles

T =
1

2

N∑
i

miṙ
2
i

The motion corresponds to the stationary value to the Lagrangian L = T − V , or
the system of N vectorial Euler equations

mir̈i −
N∑
j

γ
mimj

|ri − rj |3
(ri − rj) = 0

for N vector-function ri(t).
Since the Lagrangian is independent of time t, the first integral (??) exist

T + V = constant

which corresponds to the conservation of the whole energy of the system.
Later in Section ??, we will find other first integrals of this system and comment

about properties of its solution.

Example 1.3 (Spring-mass system) Consider the sequence of masses located
on an axis with coordinates m1, . . . ,mn; the neighboring masses are joined by the
springs. Each spring generate force fi proportional to xi−xi+1 xi is the deflection
of ith mass from the equilibrium position.

The equations of motion of this system is as follows. The kinetic energy T of
the system is equal to the sum of kinetic energies of the masses,

T =
1

2
m(ẋ1 + . . .+ ẋn).

The potential energy V is the sum of energies of all springs, or

V =
1

2
C1(x2 − x1)2 + . . .+

1

2
Cn−1(xn − xn−1)2
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The Lagrangian L = T − V correspond to n differential equations

m1ẍ1 + C1(x1 − x2) = 0

m2ẍ2 + C2(x2 − x3)− C1(x1 − x2) = 0

. . . . . .

mnẍn − Cn−1(xn−1 − xn) = 0

or in vector form
Mẍ = PTCPx

where x = (m1, . . . , xn) is the vector of displacements, M is the n × n diagonal
matrix of masses, V is the (n− 1)× (n− 1) diagonal matrix of stiffness,

M =


m1 0 . . . 0
0 m2 . . . 0
. . . . . . . . . . . .
0 0 . . . mn

 , C =


C1 0 . . . 0
0 C2 . . . 0
. . . . . . . . . . . .
0 0 . . . Cn−1


and P is the n× (n− 1) matrix that corresponds to the operation of difference,

P =


1 −1 0 . . . 0
0 1 −1 . . . 0
. . . . . . . . . . . .
0 0 0 . . . 1

 ,

When the masses and the springs are identical, m1 = . . . = mn = m and
C1 = . . . = Cn−1 = C, the system simplifies to

m1ẍ1 + C(x1 − x2) = 0

m2ẍ2 + C(−x1 + 2x2 − x3) = 0

. . . . . .

mnẍn − C(xn−1 − xn) = 0

or in vector form,
ẍ+ kP2x = 0

where k = C
m is the positive parameter, and P2 = PTP is the n × n matrix of

second differences,

P2 =


1 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

 ,

This system of linear equations can be solved by the standard methods.
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1.2 Generalized coordinates

The Lagrangian concept allows for obtaining equations of motion of a con-
strained system. In this case, the kinetic and potential energy must be defined
as a function of generalized coordinates that describes degrees of freedom of mo-
tion consistent with the constraints. If a particle can move along a surface, one
can define coordinates on this surface and allow the motion only along these
coordinates. The kinetic and potential energies must be expressed via these
coordinates.

The particles can move along the generalized coordinates qi. The number
of the generalized coordinates qi corresponds to the degrees of freedom. The
consistent with constraints position x becomes x(q). The speed ẋ becomes a
linear form of q̇

ẋ =
∑(

∂x

∂qi
q̇i

)
For example, a particle can move along the circumference of the radius R,
the generalized coordinate will be an angle θ which determines the position
x1 = R cos θ, x2 = R sin θ at this circumference and its speed becomes

ẋ1 = −Rθ̇ sin θ, xẋ2 = Rθ̇ cos θ

This system has only one degree of freedom, because fixation of one parameter
θ completely defines the position of a point at a circumference.

When the motion is written in terms of generalized coordinates, the con-
straints are automatically satisfied. The potential and kinetic energies can be
expressed though these coordinates. The potential energy V (x) is rewritten as
W (q) = V (x(q)) and the kinetic energy T (ẋ) =

∑
imiẋ

2
i becomes a quadratic

form of derivatives of generalized coordinates q̇i = ∂x
∂qi
q̇i:

T (ẋ) =
1

2

∑
i

miẋ
2
i =

1

2
q̇TR(q)q̇

where the symmetric nonnegative matrix R is equal to

R = {Rij}, Rij =

(
∂T

∂x

∂x

∂qi

)T (
∂T

∂x

∂x

∂qj

)
Notice that Tq(q̇) is a homogeneous quadratic function of q̇, Tq(kq̇) = k2Tq(q̇)
and therefore

∂

∂q̇
Tq(q, q̇) · q̇ = 2Tq(q, q̇). (1)

The variational problem that correspond to minimal action with respect to
generalized coordinates becomes

min
q

∫ t1

t0

(Tq − Vq)dt (2)
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Because potential energy V does not depend on q̇, the Euler equations have the
form

d

dt

∂Tq
∂q̇
− ∂

∂q
(Tq − Vq) = 0 (3)

which is similar to the form of unrestricted motion.
When the Lagrangian is independent of t the system is called conservative,

In this case, the Euler equation assumes the first integral in the form (use (1))

q̇
∂Tq
∂q̇
− (Tq − Vq) = Tq + Vq = constant(t) (4)

The quantity Π = Tq + Vq is called the whole energy of a mechanical system; it
is preserved along the trajectory of a conservative system.

The generalized coordinates help to formulate differential equations of mo-
tion of the constrained system. Consider several examples.

Example 1.4 (Isochrone) Consider a motion of a heavy mass along the cycloid:

x = θ − cos θ, y = sin θ

To derive the equation of motion, we write down the kinetic T and potential V
energy of the mass m, using q = θ as a generalized coordinate. We have

T =
1

2
mẋ2 + ẏ2 = m(1 + sin θ)θ̇2

and V = −my = −m sin θ.
The Lagrangian

L = T − V = m(1 + sin θ)θ̇2 +m sin θ

corresponds to the Euler equation

SL(θ) =
d

dt

(
(1 + sin θ)

dθ

dt

)
− cos θ = 0.

which solution (check with Maple!) is

θ(t) = arccos(C1 sin t+ C2 cos t)

where C1 and C2 are constant of integration. One can check that θ(t) is 2π-periodic
for all values of C1 and C2. This explains the name ”isochrone” given to the cycloid
before it was found that this curve is also the brachistochrone (see Section ??)

Example 1.5 (Winding around a circle) Describe the motion of a mass m
tied to a cylinder of radius R by a rope that winds around it when the mass evolves
around the cylinder. Assume that the thickness of the rope is negligible small
compared with the radius R, and neglect the gravity.
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It is convenient to use the polar coordinate system with the center at the center
of the cylinder. Let us compose the Lagrangian. The potential energy is zero, and
the kinetic energy is

L = T =
1

2
m(ẋ2 + ẏ2)

=
1

2
m
(
ṙ cos θ − rθ̇ sin θ

)2

+
1

2
m
(
ṙ sin θ + rθ̇ cos θ

)2

=
1

2
m
(
ṙ2 + r2θ̇2

)
The coordinates r(t) and θ(t) are algebraically connected by Pythagorean relation
R2 + l(t)2 = r(t)2 at each time instance t. Here l(t) is the part of the rope that
is not winded yet; it is expressed through the angle θ(t) and the initial length l0 of
the rope, l(t) = l0 −Rθ(t). We obtain

(l0 −Rθ(t))2 = r(t)2 −R2 ∀t ∈ [0, tfinal] ,

and observe that the time of winding tfinal is finite. The trajectory r(θ) is a spiral.
The obtained relation allows for linking of ṙ and θ̇. We differentiate it and

obtain
rṙ = −R(l0 −Rθ(t))θ̇ = −R(

√
r2 −R2θ̇

or

θ̇ = − l̇

R
= − rṙ

R
√
r2 −R2

The Lagrangian becomes

L(r, ṙ) =
1

2
mṙ2

(
1 +

r4

R2(r2 −R2)

)
Its first integral

1

2
mṙ2

(
1 +

r4

R2(r2 −R2)

)
= C

shows the dependence of the speed ṙ on the coordinate r. It can be integrated in
a quadratures, leading to the solution

t(r) = C1

∫ r

r0

√
r2 −R2

r4 +R2r2 −R4
dr

The two constants r0 and C1 are determined from the initial conditions.
The first integral allows us to visualize the trajectory by plotting ṙ versus r.

Such graph is called the phase portrait of the trajectory.

Example 1.6 (Move through a funnel) Consider the motion of a heavy par-
ticle through a vertical funnel. The axisymmetric funnel is described by the equation
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z = φ(r) in cylindrical coordinate system. The potential energy of the particle is
proportional to z, V = −mgz = −mgφ(r) The kinetic energy is

T =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
or, accounting that the point moves along the funnel,

T =
1

2
m
(

(1 + φ′2)ṙ2 + r2θ̇2
)
.

The Lagrangian

L = T − V =
1

2
m
(

(1 + φ′2)ṙ2 + r2θ̇2
)

+mgφ(r)

is independent of the time t and the angle θ, therefore two first integrals exist:

∂L

∂θ̇
= µ ⇒ θ̇ =

µ

r2

where µ is a constant, and

T + V =
1

2
m
(

(1 + φ′2)ṙ2 + r2θ̇2
)
−mgφ(r) = Π

The last equation can be simplified by excluding θ̇ using the previous one,

Π =
1

2
m

(
(1 + φ′2)ṙ2 +

µ2

r2
− gφ(r)

)
Here, the constants Π and µ can be defined from the initial conditions. They
represent, respectively, the whole energy of the system and the angular momentum;
these quantities are conserved along the trajectory. These integrals alone allow for
integration of the system, without computing the Euler equations. Solving for ṙ,
we find

ṙ2 = 2

(
2Π
m + gφ(r)

)
r2 − µ2

1 + φ′2

Consequently, we can find r(t) and θ(t) (see Problem ??.

t =

∫ r
√

1 + φ′2

2
(

2Π
m + gφ(r)

)
r2 − µ2

dr

A periodic trajectory corresponds to constant value θ̇(t) and constant value of
r(t) = r0 which is defined by the initial energy, angular momentum, and the shape
φ(r) of the funnel, and satisfies the equation

µ2

r2
0

− gφ(r0) =
2Π

m

This equation does not necessary has a solution. Physically, a heavy particle can
either tend to a stready revolutions around the funnel, or fall through it.
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2 Weak and strong local minima

2.1 Norms in functional space

The answer to the question of whether or not two curves are close to each other
depends on the definition of closeness. This question is studied in the theory of
topological spaces. Unlike the distance between two points in finite-dimensional
Euclidian space, the same two curves can be considered to be infinitesimally
close or far parted depending on the meaning of ”distance.” The variational
tests examine the stability of the stationary solutions to small perturbations;
different tests differently define the smallness of perturbation.

In calculus of variations, there are three mostly used criteria to measure
the closeness of two differentiable functions f1(x) and f2(x): The norm N1 of
difference δf(x) = f1(x)− f2(x) in the values of functions

N1(δf) = max
x∈(0,1)

|δf(x)|

the norm N2 of difference of their derivatives,

N2(δf) = max
x∈(0,1)

|δf ′(x)|

and the length N3 of the interval on which these functions are different

N3(δf) = ∆ if δf(x) = 0 ∀x 6∈ [x, x+ ∆]

None of the variational tests guarantees the global optimality of the tested
trajectory, only local minimum; on the other hand, these tests are simple enough
to be applied. The local minimum satisfies the inequality

I(u) ≤ I(u+ δu) ∀δu : N (δu(x)) < ε

where ε is infinitesimally small, and N is a norm. The definition of what is local
minimum depends on the above definitions of the norm N .

If the perturbation is small in the following sense

NLegendre(δu) = N1(δu) +N2(δu) +N3(δu) < ε

the Legendre text is satisfied. The test assumes that the compared functions
and their derivatives are close everywhere, and they are identical outside of an
infinitesimal interval.

The Weierstrass text assumes that the compared functions are close ev-
erywhere, and they are identical outside of an infinitesimal interval, but their
derivatives are not close in the interval of variation:

NWeierstrass(δu) = N1(δu) +N3(δu) < ε.

If the objective functional satisfy the Weierstrass test, we say that the extremal
u(x) realizes a strong local minimum. The Weierstrass test is stronger than the
Legendre test.
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The Jacobi test (see below) assumes that

NJacobi(δu) = N1(δu) +N2(δu) < ε

that is the compared functions and their derivatives are close everywhere, but
the variation is not localized. The Jacobi test is stronger than the Legendre
test. If Jacobi test is satisfied we say that the extremal u(x) realizes a weak
local minimum (not to be confused with the minimum of weakly convergent
sequence and with the minimum for localized variations). Neither Weierstrass
and Jacobi tests are stronger than the other: They test the stationary trajectory
from different angles.

2.2 Sufficient condition for the weak local minimum

We assume that a trajectory u(x) satisfies the stationary conditions and Legen-
dre condition. Let us apply a nonlocal variation of an infinitesimal magnitude:
δu = O(ε)� 1 and δu′ = O(ε)� 1; we compute the expansion of the increment
δI of the functional keeping terms up to O(ε2). We also recall that the linear
of ε terms are zero because the Euler equation for u(x) holds. We have

δI =

∫ r

0

[
∂2F

∂u2
(δu)2 + 2

∂2F

∂u∂u′
(δu)(δu′) +

∂2F

∂(u′)2
(δu′)2

]
dx+ o(ε2) (5)

No variation of this kind can improve the stationary solution if the quadratic
form

Q(u, u′) =

(
∂2F
∂u2

∂2F
∂u∂u′

∂2F
∂u∂u′

∂2F
∂(u′)2

)
is positively defined,

Q(u, u′) > 0 on the stationary trajectory u(x) (6)

This condition is called the sufficient condition for the weak minimum because
it shows that all sufficiently close and smooth curves cannot improve the cost
of the problem compared with the stationary curve.

Notice that the term ∂2F
∂u′2 is non-negative because of the Legendre condition

(??).

Example 2.1 Show that the sufficient condition is satisfied for the Lagrangians

F =
1

2
u2 +

1

2
(u′)2 and F2 =

1

|u|
(u′)2

Next example shows that violation of the sufficient conditions can yield to nonex-
istance of the solution.

Example 2.2 (Nonexistence of the minimizer: Blow up) Consider the prob-
lem: Minimize the functional

I = min
u

∫ r

0

(
1

2
(u′)2 − c2

2
u2

)
dx u(0) = 0; u(r) = A
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The first variation δI is zero,

δI =

∫ r

0

(
u′′ + c2u

)
δudx = 0

if u(x) satisfies the Euler equation

u′′ + c2u = 0, u(0) = 0, u(r) = A. (7)

The Weierstrass test is satisfied, because the dependence on the derivative is convex.
The second variation is

δ2I =

∫ r

0

(
1

2
(δu′)2 − c2

2
(δu)2

)
dx

Since the ends of the trajectory are fixed, the variation δu satisfies homogeneous conditions
δu(0) = δu(r) = 0. Let us choose the variation as follow:

δu =

{
ε sin

(
πx
L

)
, 0 ≤ x ≤ L

0 x > L

where the interval of variation [0, L] is not greater that [0, r], L ≤ r. Computing the
second variation, we obtain

(δu)′ =

{
ε π
L
cos
(
πx
L

)
, 0 ≤ x ≤ L

0 x > L

and

δ2I =
1

L
ε2
(
π2

L2
− c2

)
, L ≤ r

We are specially interested in the dependence of optimal solution on r. The second
variation is negative when r is large,

δ2I ≤ 1

r
ε2
(
π2

r2
− c2

)
< 0 if r > cπ

which shows that the a stationary solution is not a minimizer.
To clarify the phenomenon, let us compute the stationary solution from the Euler

equation (7). We have

u(x) =

(
A

sin(cr)

)
sin(cx) and I(u) =

A2

sin2(cr)

(
π2

r2
− c2

)
When r increases approaching the value cπ, the magnitude of the stationary solution
indefinitely grows, and the cost indefinitely decreases:

lim
r→πc−0

I(u) = −∞

The solution of the Euler equation that corresponds to finite I(u) when r > πc is not

a minimizer.

10



3 Jacobi variation

The Jacobi condition examines the optimality of ”long” trajectories. It com-
plements the Weierstrass test that investigates the stability of a Lagrangian to
strong localized variations. Jacobi condition tries to disprove optimality of a
stationary trajectory by testing the dependence of Lagrangian on the minimizer
itself not of its derivative. We assume that a trajectory u(x) satisfies the sta-
tionary conditions and Weierstrass condition but does not satisfy the sufficient
conditions for a weak minimum, Q(u, u′) is not positively defined.

To derive Jacobi condition, we apply again an infinitesimal nonlocal varia-
tion: δu = O(ε)� 1 and δu′ = O(ε)� 1 and examine the expression (5) for the
second variation. Notice that we denote the upper limit of integration in (5) by
r; we are testing the stability of the trajectory depending on its length. When
a nonlocal ”shallow” variation is applied, the increment increases because of as-

sumed positivity of ∂2F
∂(u′)2 and decreases because of assumed nonpositivity of the

matrix Q. Depending on the length r of the interval of integration and chosen
form of the variation δu, one of these effects prevails. stronger, the extremal
fails the test and is nonoptimal.

Let us choose the best shape δu of the variation. The expression (5) itself is
a variational problem for δu which we rename as v; the Lagrangian is quadratic
of v and v′ and the coefficients are functions of x determined by the stationary
trajectory u(x):

δI =

∫ r

0

[
Av2 + 2B v v′ + C(v′)2

]
dx, v(0) = v(r) = 0 (8)

where

A =
∂2F

∂u2
, B =

∂2F

∂u∂u′
, C =

∂2F

∂(u′)2

The problem (8) correspond to the Euler equation that is a solution to Storm-
Liuville problem:

d

dx
(Cv′ +Bv)−Av = 0, v(0) = v(rconj) = 0 if r < rconj (9)

with boundary conditions v(0) = v(r) = 0. The point rconj is called a conjugate
point to the end of the interval. The problem is homogeneous: If v(x) is a
solution and c is a real number, cv(x) is also a solution.

Jacobi condition is satisfied if the interval does not contain conjugate points,
that is there is no nontrivial solutions to (9) on any subinterval of [0, rconj], that
is if there are no nontrivial solutions of (9) with boundary conditions v(r) =
v(rconj) = 0 where 0 ≤ rconj ≤ r.

If this condition is violated, than there exist many trajectories

u(x)

{
u0 + v if x ∈ [0, rconj]
u0 if x ∈ [rconj, r]

that deliver the same value of the cost. These trajectories have discontinuous
derivative at the points r1 and r2 which leads to a contradiction.
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Example 3.1 (Distance on a sphere: Columbus problem) Consider the prob-
lem of geodesics on a sphere again. Let us examine geodesics: They surely satisfy
Weierstrass tests, but the Jacobi test is violated if the length of geodesics is larger
than π times the radius of the sphere.

The argument that the solution to the problem of shortest distance on a sphere
bifurcates was famously used by Columbus who argued that the shortest way to
India might path through the West route. He was not able to prove or disprove his
conjecture because he bumped into American continent discovering New World for
better and for worst.
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