Midterm 2

M 3160: Applied Complex Variable

Spring 2018

1. Evaluate the integral
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2. Evaluate the integral
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3. Expand function
1

T2 + z
into the Taylor series around the point zg = 1. What is the radius of
convergence?

F(z)




4. Expand function

f(z) = cos(2z) — cos <2>

z

into the Laurent series around the point zg = 0.
Find the coefficients of the expansion.
What is the radius of convergence?



5. Using representation
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find the Laurent series of function F'(z) around the point zp = 0.
Define three regions where three different expansions are valid, find
these expansions.



6. Compute the residue
Res.—of(2)

if the function f(z) is either
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7. Indicate the type of singularity of the following functions at z = zg. Is
is

(a) a removable singular point,
(b) a pole of the order n (find n), or

(c) An essential singular point?

Consider the functions

(1) filz) = =5, 2 =0, (2) fo(2) = 2 sinh (1) —

) fs2) = "B, s =0 () o) = oRE) =g
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