Extra credit problems. Math 3150-001. Spring 2015

Due Friday, April 17

Your name (please, print) \qquad

1. A homogeneous current

$$
\mathbf{j}=j_{0}[1,0]
$$

flows through an infinite conducting plane of conductivity $k_{0}=1$.
A circular inclusion of radius r and of conductivity $k_{i}=10$ is placed in the plane and distorts the current. An annulus $1 \leq r \leq c$ of conducting material ($k_{a}=0.1$) (a cloak) must be placed around the circle, so that the inclusions become "invisible" that is the current everywhere outside the annulus is equal to \mathbf{j}.

Find the radius of that cloak. ($\mathbf{2 0}$ points)

2. A homogeneous current

$$
\mathbf{j}=j_{0}[0,0,1]
$$

flows through an infinite conducting space of conductivity $k_{0}=1$.
A spherical inclusion of radius r and of conductivity $k_{i}=10$ is placed in the space and distorts the current. An spherical layer $1 \leq r \leq c$ of conducting material ($k_{a}=0.1$) (a cloak) must be placed around the inclusion, so that the inclusions become "invisible" that is the current everywhere outside the annulus is equal to \mathbf{j}.

Find the radius of that 3d cloak. (40 points)

