Final Exam M 3150-001, Spring 2017

Name

Solve the following problems. Show the method (the derivation),

1. Find the Fourier series of

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x \in(-1,0) \\
1 & \text { if } x \in(0,1)
\end{array}, \quad x \in(-1,1)\right.
$$

Evaluate the first four coefficients of the series.
2. A 1-periodic function $g(t), t \in(0,1)$ is presented by its Fourier series

$$
g(t)=\sum_{n=1}^{\infty} a_{n} \sin (\pi n t)
$$

with some unknown coefficients a_{n}. This function satisfies the differential equation

$$
g^{\prime \prime}(t)+c^{2} g(t)=\sum_{n=1}^{\infty} \frac{1}{\pi^{3} n^{3}} \sin (\pi n t)
$$

Find the coefficients a_{n}.
3. Find $u(x, t)$, that satisfies the following conditions:

$$
\begin{array}{ll}
\text { Heat Equation } & \frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[0,1], t \in[0, \infty) . \\
\text { Boundary cond. } & u(0, t)=0, \quad u(1, t)=0 \\
\text { Initial cond. } & u(x, 0)=2 \sin (7 \pi x) .
\end{array}
$$

4. Determine the equilibrium temperature distribution $u(r, \theta)$ outside of a disk of radius $a=1$, if the boundary temperature is $u(1, \theta)=$ $2+\cos (5 \theta)$, and the temperature at infinity is bounded. Show the separation of variables technique.
Note: Laplacian in polar coordinates has the form:

$$
\nabla u(r, \theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} .
$$

5. A string vibrates according to the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}
$$

where $u(x, t)$ is the deflection, $x \in[0,1], t \in[0, \infty)$.
The ends are fixed: $u(0, t)=0, u(1, t)=0$,
the initial shape $u(x, 0)=f(x)$ is $f(x)=\sin (\pi x)-2 \sin (5 \pi x)$, and the initial speed is zero, $\left.\frac{\partial u}{\partial t}\right|_{t=0}=0$.
Find $u(x, t)$.
6. The initial distribution of the temperature in an infinite bar is

$$
u(x, 0)=e^{-4 x^{2}}
$$

The diffusivity constant k is equal two, $k=2$. Find the temperature distribution $u(x, t)$ at any time t using convolution formula.

Hint: The inverse Fourier transform \mathcal{F}^{-1} of $G(\omega)=e^{-k \omega^{2} t}$ is

$$
\mathcal{F}^{-1}(G(\omega))=\sqrt{\frac{\pi}{k t}} e^{-\frac{x^{2}}{4 k t}}
$$

