# To the Final: Problems for practice. M 3150-001, Spring 2017 

Andrej Cherkaev

Solve the following problems. Show the method (the derivation), do not simply copy the final formulas.

1. Find $u(x, t)$, that satisfies the following conditions:

$$
\begin{array}{ll}
\text { Heat Equation } & \frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[0,2], t \in[0, \infty) . \\
\text { Boundary cond. } & u(0, t)=0, \quad u(2, t)=0 \\
\text { Initial cond. } & u(x, 0)=3 \sin (\pi x) .
\end{array}
$$

2. Determine the equilibrium temperature distribution $u(r, \theta)$ inside a disk of radius $\mathrm{a}=1$, if the boundary temperature is $u(1, \theta)=3 \cos (3 \theta)$. Note: Laplacian in polar coordinates has the form

$$
\nabla u(r, \theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} .
$$

3. Find the sine Fourier series of

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in[0,1] \\
0 & \text { if } x \in[1,3]
\end{array}, \quad x \in(0,3) .\right.
$$

Find the first three nonzero coefficients of the series.
4. The sine Fourier series of $f(x)=x(1-x), x \in(0,1)$ is

$$
f(x)=\sum_{n=1}^{\infty} \sin (\pi n x), \quad a_{n}=\frac{2}{\pi^{3} n^{3}}\left((-1)^{n}-1\right)
$$

Sketch the graphs of $f(x), f^{\prime}(x), f^{\prime \prime}(x), x \in(0,1)$ and find Fourier series of them. Find the first two nonzero coefficients of the series.
5. A string vibrates according to the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}
$$

where $u(x, t)$ is the deflection, $x \in[0,1], t \in[0, \infty)$.
The ends are fixed: $u(0, t)=0, u(1, t)=0$,
the initial shape $u(x, t)$ is $u(x, 0)=2 \sin (5 \pi x)$, and the initial speed is zero, $\left.\frac{\partial u}{\partial t}\right|_{t=0}=0$.
Find $u(x, t)$.
6. The initial distribution of the temperature in an infinite bar is

$$
u(x, 0)= \begin{cases}1 & \text { if } x \in[-1,1] \\ 0 & \text { if } x \notin[-1,1]\end{cases}
$$

Find the temperature distribution $u(x, t)$ at any time $t$. The diffusivity constant is one.

