5710 Fall 2013. Home Work 1

August 28, 2013

1. Consider an equation $A x=b$ where

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & 0 & 0 \\
-1 & 1 & 2 & 3 \\
2 & 0 & -1 & -2
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right)
$$

Show that A^{-1} does not exists, find the least square solution with the regilarizing term $\|x-a\|^{2}$, where $a^{T}=(1,001)$.
2. Consider a quadratic form $Q=x^{T} A X$ where

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

Represent it as a sum of squares

$$
Q=\sum_{i=1}^{4} c_{i} y_{i}^{2}
$$

where $y=L x$ is a linear transformation of the coordinates, and L is a triangular matrix. Is the form positively defined?

