m-3150-001 Midterm exam 2

Andrej Cherkaev

Your name,

Solve any three problems:

1. Find the displacement $u(x, t)$ of a string of a length 5 , if its initial displacement $u(x, 0)$ is

$$
u(x, 0)=\sin \left(\frac{\pi x}{5}\right)+\frac{1}{3} \sin \left(\frac{3 \pi x}{5}\right)
$$

its initial speed is zero. and the spring constant c is $c=2$.
2. Initially, a rod has zero temperature $u(x, 0)=0$. Its left end $(x=0)$ is kept at zero temperature $u(0, t)=0$ and its right end $(x=2)$ - at the temperature 100, $u(2, t)=100$, and the diffusivity constant c is equal to one, $c=1$. Find the temperature inside the rod at $t=2$. (Hint: Account for nonzero boundary conditions)
3. The left end of a rod is thermo-insulated, and the right end is kept at zero temperature.

$$
\left.\frac{\partial u(x, t)}{\partial x}\right|_{x=0}=0, \quad u(3, t)=0, \quad \forall t \in[0, \infty)
$$

Find a general solution to the heat problem, assuming that the initial temperature is given, $u(x, 0)=f(x)$ and the diffusivity constant c is equal to one, $c=1$.
4. Separate variables in the the two-dimensional heat equation (proceed similarly to the two-dimensional wave equation analysis). Show the scheme of variables separation, resulting differential differential equations, general soultion, do not compute coefficients.

$$
\frac{\partial u(x, y, t)}{\partial t}=c^{2}\left(\frac{\partial^{2} u(x, y, t)}{\partial x^{2}}+\frac{\partial^{2} u(x, y, t)}{\partial y^{2}}\right)
$$

if $0 \leq x \leq a, \quad 0 \leq y \leq b, u(x, y, 0)=f(x, y)$,
$u(0, y, t)=u(a, y, t)=0$,
$u(x, 0, t)=u(x, b, t)=0$

