Hint to cloaking problem

1. The problem: A circular inclusion of conductivity $\sigma_{\text {inc }}$ of radius p is placed in an infinite plane of conductivity σ_{0} and a homogeneous field $u(r, \theta)$ is applied at infinity,

$$
\lim _{r \rightarrow \infty} u(r, \theta)=A_{0} x=A_{0} r \cos (\theta)
$$

where A_{0} is a known constant. Create a cloaking device placing an annulus (ring) $p<r \leq q$ of conductivity $\sigma_{c l}$ around the inclusion, so that the field u outside of the cloaking region $r>q$ becomes equal to an undisturbed $u(r, \theta)=A_{0} r \cos (\theta)$.
2. The field $u(r, \theta)$ in the outside domain, cloaking domain, and the inclusion satisfies Laplace equation and is equal to:

$$
\begin{array}{cl}
u(r, \theta)=\left(A_{0} r+\frac{B_{0}}{r}\right) \cos (\theta) & \text { if } r>q \\
u(r, \theta)=\left(A_{c l} r+\frac{B_{c l}}{r}\right) \cos (\theta) & \text { if } p<r \leq q \\
u(r, \theta)=\left(A_{\text {inc }} r\right) \cos (\theta) & \text { if } r<p \tag{3}
\end{array}
$$

respectively, where $B_{0}, A_{c l}, B_{c l}, A_{i n c}$ are some constants.
3. At the boundaries $r=p$ and $r=q$, the following continuity conditions are satisfied:
A. The potential is continuous $u_{+}=u_{-}$, where u_{+}and u_{-}are the values of potential to the left and to the right of the jump line.

B . The normal current is continuous:

$$
\left.\sigma_{+} \frac{\partial u}{\partial r}\right|_{+}=\left.\sigma_{-} \frac{\partial u}{\partial r}\right|_{-}
$$

These four relations allow for finding the unknown constants $B_{0}, A_{c l}, B_{c l}, A_{\text {inc }}$ if p, q are known.
4. To create a cloak, find the radius q so that $B_{0}=0$ which will make the outside field $r>q$ undisturbed, as if there were no inclusion.

