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Stationary conditions point to a possibly optimal trajectory but they do
not state that the trajectory corresponds to the minimum of the functional.
A stationary solution can correspond to minimum, local minimum, maximum,
local maximum, of a saddle point of the functional. In this chapter, we establish
methods aiming to distinguish local minimum from local maximum or saddle.
In addition to being a solution to the Euler equation, the true minimizer satisfies
necessary conditions in the form of inequalities. We introduce variational tests,
Weierstrass and Jacobi conditions, that supplement each other.

The conclusion of optimality of the tested stationary curve u(x) is based on
a comparison of the problem costs I(u) and I(u + δu) computed at u and any
close-by admissible curve u+ δu. The closeness of admissible curve is required
to simplify the calculation and obtain convenient optimality conditions. The
question whether or not two curves are close to each other or whether υ(x) is
small depends on what curves we consider to be close. Below, we work out three
tests of optimality using different definitions of closeness.

1 Local variations

1.1 Legendre Test

Consider again the simplest problem of the calculus of variations

min
u(x),x∈[a,b]

I(u), I(u) =

∫ b

a

F (x, u, u′)dx, u(a) = ua, u(b) = ub (1)

and function u(x) that satisfies the Euler equation and boundary conditions,

∂F

∂u
− d

dx

∂F

∂u′
= 0, u(a) = ua, u(b) = ub, (2)

so that the first variation δI is zero.
Let us compute the increment δ2I of the objective caused by the variation

δu(x, x0) =

{
ε2φ

(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε
(3)

where φ(x) is a function with the following properties:

φ(−1) = φ(1) = 0, max
x∈[−1,1]

|φ(x)| ≤ 1, max
x∈[−1,1]

|φ′(x)| ≤ 1 (4)

The magnitude of this Legendre-type variation tends to zero when ε → 0, and
the magnitude of its derivative

δu′(x, x0) =

{
−ε φ′

(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε

tends to zero as well. Additionally, the variation is local: it is zero outside of the
interval of the length 2ε. We use these features of the variation in the calculation
of the increment of the cost.
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Expanding F into Taylor series and keeping the quadratic terms, we obtain

δI = I(u+ δu)− I(u) =

∫ b

a

(F (x, u+ δu, u′ + δu′)− F (x, u, u′))dx

=

∫ b

a

([
∂F

∂u
− d

dx

∂F

∂u′

]
δu+Aδu2 + 2Bδu δu′ + C(δu′)2

)
dx+

∂F

∂u′

∣∣∣∣x=b

x=a

, (5)

where

A =
∂2F

∂u2
, B =

∂2F

∂u∂u′
, C =

∂2F

∂(u′)2

and all derivatives are computed at the point x0 at the optimal trajectory u(x).
The term in the brackets in the integrand in the right-hand side of (5) is zero
because the Euler equation is satisfied. Let us estimate the remaining terms∫ b

a

A(x)(δu)2dx =

∫ x0+ε

x0−ε
A(x)(δu)2dx

≤ ε4

∫ x0+ε

x0−ε
A(x)dx = A(x0) ε5 + o(ε5)

Indeed, the variation δu is zero outside of the interval [x−ε, x+ε], has magnitude
of the order of ε2 in this interval, and A(x) is assumed to be continuous at the
trajectory. Similarly, we estimate∫ b

a

B(x)δu δu′ dx ≤ ε3

∫ x0+ε

x0−ε
B(x)dx = B(x0) ε4 + o(ε4)∫ b

a

C(x)(δu′)2dx ≤ ε2

∫ x0+ε

x0−ε
C(x)dx = C(x0) ε3 + o(ε3)

Its derivative’s magnitude δu′ is of the order of ε, therefore |δu′| � |δu| as
ε→ 0; we conclude that the last term in the integrand in the right-hand side of
(5) dominates. The inequality δI > 0 implies inequality

∂2F

∂(u′)2
≥ 0 (6)

which is called Legendre condition or Legendre test.

Remark 1.1 Here, it is assumed that ∂2F
∂(u′)2 6= 0. If ∂2F

∂(u′)2 = 0, the Legendre test

is inconclusive, and more sophisticated and sensitive variations most be used. An
example is Kelly variation

υ = ε2

 φ
(
x−x0−ε

ε

)
if x ∈ [x0 − 2ε, x0)

φ
(
x−x0+ε

ε

)
if x ∈ [x0 + 2ε, x0)

0 elsewhere.
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The corresponding condition for the minimum is []

d

dx2

∂2F

∂(u′)2
≤ 0

It is obtained by the same method. This time, four terms in the Taylor expansion
is kept.

Example 1.1 Legendre test is always satisfied in the geometric optics. The La-

grangian depends on the derivative as F =

√
1+y′2

v(y) and its second derivative

∂2F

∂y′ 2
=

1

v(y)(1 + y′2)
3
2

is always nonnegative if v > 0. It is physically obvious that the fastest path is stable
to short-term perturbations.

Example 1.2 Legendre test is also always satisfied in the Lagrangian mechanics.
The Lagrangian F = T−V depends on the derivatives of the generalized coordinates
through the kinetic energy T = 1

2 q̇R(q)q̇ and its Hessian

∂2F

∂q′ 2
= R

is equal to the generalized inertia R which is always positive definite.
Physically speaking, inertia does not allow for infinitesimal oscillations because

they always increase the kinetic energy while potential energy is insensitive to them.

Example 1.3 (Two-well Lagrangian) Consider the Lagrangian

F (u, u′) = [(u′)2 − u2]2

for a simples variational problem with fixed boundary data u(0) = a0, u(1) = a1.
The Legendre test is satisfied is the inequality is valid:

∂2F

∂(u′)2
= 4(3u′2 − u2) ≥ 0.

Consequently, the solution u of Euler equation

[(u′)3 − u2u′]′ + u(u′)2 − u3 = 0, u(0) = a0, u(1) = a1 (7)

might correspond to a local minimum of the functional if, in addition, the inequality
3u′2 − u2 ≥ 0 is satisfied in all points x ∈ (0, 1). Later we show how to transform
(relax) the problem, if its solution does not satisfy this condition.
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1.2 Weierstrass Test

The Weierstrass test detects optimality the trajectory by checking its stability
against strong local perturbations. It is also local: it compares trajectories that
coincide everywhere except a small interval where their derivatives significantly
differ.

Suppose that u is the minimizer of the variational problem (1) that satisfies
the Euler equation (2). Consider a variation that is shaped as an infinitesimal
triangle supported on the interval [x0, x0 + ε], where x0 ∈ (a, b) (see ??):

∆u(x) =

 0 if x 6∈ [x0, x0 + ε],
v1(x− x0) if x ∈ [x0, x0 + αε],
v2(x− x0)− αε(v1 − v2) if x ∈ [x0 + αε, x0 + ε]

where v1 and v2 are two real numbers and α ∈ (0, 1). Parameters α (0 < α <
1), v1 and v2 are related

αv1 + (1− α)v2 = 0 (8)

to provide the continuity of u+ ∆u at the point x0 + ε, or equality

∆u(x0 + ε− 0) = 0.

Condition (8) can be rewritten as

v1 = (1− α)v, v2 = −αv = 0, (9)

where v is an arbitrary real number.
The considered variation (the Weierstrass variation) is localized and has an

infinitesimal absolute value (if ε → 0), but, unlike the Legendre variation, its
derivative (∆u)′ is finite:

(∆u)′ =

 0 if x 6∈ [x0, x0 + ε],
v1 if x ∈ [x0, x0 + αε],
v2 if x ∈ [x0 + αε, x0 + ε].

(10)

The increment is

δI = I(u+ δu)− I(u) =

∫ b

a

(F (x, u+ δu, u′ + ∆u′)− F (x, u, u′))dx (11)

is computed by splitting the first term in the integrant into two parts

δI =

∫ x0+αε

x0

F (x, u+ δu, u′ + v1)dx+

∫ x0−ε

x0+αε

F (x, u+ δu, u′ + v2)dx

−
∫ x0+ε

x0

F (x, u, u′)dx (12)

and rounding integrands up to ε as follows

F (x, u(x) + ∆u, u(x)′ + v1) = F (x0, u(x0), u′(x0) + v1) +O(ε), ∀x ∈ [x0, x0 + ε]
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and similarly for F (x, u(x) + ∆u, u(x)′ + v2). The smallness of the variation δu
follows from to smallness [x0, x0+ε] of the interval of the variation and finiteness
of the variation of the derivative there.

With these simplifications, we compute the main term of the increment as

δI(u, x0) =

ε[αF (x0, u, u
′ + v1) + (1− α)F (x0, u, u

′ + v2)− F (x0, u, u
′)] + o(ε) (13)

Repeating the variational arguments and using the arbitrariness of x0, we
find that an inequality holds

δI(u, x) ≥ 0 ∀x ∈ [a, b] (14)

for a minimizer u. The last expression results in the Weierstrass necessary
condition.

Any minimizer u(x) of (1) satisfies the inequality

αF (x, u, u′ + (1− α)v) + (1− α)F (x, u, u′ − αv)− F (x, u, u′) ≥ 0

∀v, ∀α ∈ [0, 1] (15)

The reader may recognize in this inequality the definition of convexity, or
the condition that the graph of the function F (., ., z) (considered as a function
of the third argument z = u′) lies below the the chord supported by points
z1 = u′+ (1−α)v and z2 = u′−αv in the interval [z1, z2] between there points.

The Weierstrass condition requires convexity of the Lagrangian F (x, y, z)
with respect to its third argument z = u′. The first two arguments x, = u are
determined from the equation of the tested trajectory. Recall that the tested
minimizer u(x) is a solution to the Euler equation.

The Weierstrass test is stronger than the Legendre test because convexity
implies nonnegativity of the second derivative. It compares the optimal trajec-
tory with larger set of admissible trajectories.

Example 1.4 (Two-well Lagrangian. II) Consider again the Lagrangian dis-
cussed in Example 1.3

F (u, u′) =
(
(u′)2 − u2

)2
F (u, v) is convex as a function of v if |v| ≥ |u|. Indeed, take

v1 = u− u′, v1 = −u− u′, α =
u+ u′

2u

and apply formula (13). We have F (u, u′ + v1) = F (u, u′ + v2) = 0 and

αF (u, u′ + v1) + (1− α)F (u, u′ + v2)− F (u, u′) < 0, if α ∈ [0, 1] or u′ ∈ [−u, u]

The Weierstrass test u′2 ≥ u2 is stronger than Legendre test, u′2 ≥ 1
3u

2 The
stationary solution u (see (7)) may correspond to a local minimum of the functional
if, the inequality |u′(x)| ≥ |u(x)| is satisfied in all points x ∈ (0, 1).
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Figure 1: The construction of Weierstrass E-function. The graph of a convex
function and its tangent plane.

Weierstrass E-function Weierstrass suggested a convenient test for convex-
ity of Lagrangian, the so-called E-function equal to the difference between the
value of Lagrangian L(x, u, ẑ) in a trial point u, z = z′ and the tangent hy-

perplane L(x, u, u′)− (ẑ − u′)T ∂L(x,u,u′)
∂u′ to the optimal trajectory at the point

u, u′:

EL(x, u, u′, ẑ) = L(x, u, ẑ)− L(x, u, u′)− (ẑ − u′)∂L(x, u, u′)

∂u′
(16)

Function EL(x, u, u′, ẑ) vanishes together with the derivative ∂E(L)
∂ẑ when ẑ = u′:

EL(x, u, u′, ẑ)|ẑ=u′ = 0,
∂

∂ẑ
E(L(x, u, u′, ẑ)|ẑ=u′ = 0.

According to the basic definition of convexity, the graph of a convex function
is greater than or equal to a tangent hyperplane. Thereafter, the Weierstrass
condition of minimum of the objective functional can be written as the condition
of positivity of the Weierstrass E-function for the Lagrangian,

E(L(x, u, u′, ẑ) ≥ 0 ∀ẑ, ∀x, u(x)

where u(x) is the tested trajectory.

Example 1.5 Check the optimality of Lagrangian

L = u′4 − φ(u, x)u′2 + ψ(u, x)

where φ and ψ are some functions of u and x using Weierstrass E-function.
The Weierstrass E-function for this Lagrangian is

EL(x, u, u′, ẑ) =
[
ẑ4 − φ(u, x)ẑ2 + ψ(u, x)

]
−
[
u′4 − φ(u, x)u′2 + ψ(u, x)

]
− (ẑ − u′)(4u′3 − 2φ(u, x)u).

or
EL(x, u, u′, ẑ) = (ẑ − u′)2

(
ẑ2 + 2ẑu′ − φ+ 3u′2

)
.

As expected, EL(x, u, u′, ẑ) is independent of an additive term ψ and contains a
quadratic coefficient (ẑ−u′)2. It is positive for any trial function ẑ if the quadratic

π(ẑ) = −ẑ2 − 2u′ ẑ + (φ− 3u′2)

does not have real roots, or if discriminant is negative:

4(u′)2 − φ(u, x) ≤ 0

If this condition is violated at a point of an optimal trajectory u(x), the trajectory
is nonoptimal.
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1.3 Vector-Valued Minimizer

Legendre test The Legendre and Weierstrass conditions and can be naturally
generalized to the problem with the vector-valued minimizer. If the Lagrangian
is twice differentiable function of the vector u′ = z, the Legendre condition
becomes

He(F, z) ≥ 0 (17)

(see Section ??) where He(F, z) is the Hessian

He(F, z) =

 ∂2F
∂z21

. . . ∂2F
∂z1∂zn

. . . . . . . . .
∂2F

∂z1∂zn
. . . ∂2F

∂z2n


and inequality in (17) means that the matrix is nonnegative definite (all its eigen-
values are nonnegative). The Weierstrass test requires convexity of F (x, y, z)
with respect to the third vector argument. If the minimal eigenvalue of H is
zero, more complex variations are needed to select minimum.

Weierstrass test To derive Weierstrass test for ?????? ?????????, consider
the variation of the type

δu(x, x0) =

{
εφ
(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε
(18)

where φ(−1) = φ(1) = 0, maxx∈[−1,1] |φ(x)| ≤ 1. Its derivative

δu′(x, x0) =

{
φ′
(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε

is finite and its magnitude is independent of ε in the interval |x− x0| < ε. Let
us call v(x) = φ′

(
x−x0

ε

)
. Notice that∫ x0+ε

x0−ε
v(x) dx = 0 (19)

The perturbed function is approximated as

F (x, u(x) + δu(x), u′(x) + v(x)) = F (x0, u(x0), u′(x0) + v(x)) +O(ε)

The main term of the variation

∆I = ε

[
1

2ε

∫ x0+ε

x0−ε
F (x0, u(x0), u′(x0) + v(x)) dx− F (x0, u(x0), u′(x0))

]
is positive for all x0, if u(x) is a minimizer.

Let us find and optimal (most sensitive) variation vopt(x)

∆I(vopt) = min
v(x) as in (19)

∆I ∀ x0

8



For briefness, we call

Φ (u′(x0) + v(x)) = (F (x0, u(x0), u′(x0) + v(x))

Recall that convex envelope CΦ(u′) of a function Φ(u′) and the point x = x0 is
defined as:

CΦ(u′(x0)) = min
v(x) as in (19)

1

2ε

∫ x0+ε

x0−ε
Φ (u′(x0) + v(x)) dx

We see that increment ∆I(opt) is the difference between the convex envelope
CΦ(u′(x0)) and function Φ(u′(x0)) itself. By Caratheodory theorem, the convex
envelope of Φ is supported by no more that n+ 1 points and is equal to:

CΦ(u′(x0)) = min
{α,v}∈M

n+1∑
i=1

αiΦ(u′(x0) + αivi)

where

M = {α, v} :

{
n+1∑
i=1

αi = 1,

n+1∑
i=1

vi = 0 αi ≥ 0

}
.

Returning to original notations, we conclude that

1. F is convex with respect at the point u′(x0), then optimal v(x) is zero,
vopt(x) = 0, and ∆optI = 0. The extremal u satisfies the Weierstrass test
in the point x = x0. If F is nonconvex, then ∆optI ≤ 0 and the trajectory
fails the test and is non optimal.

2. The most sensitive Weierstrass variation is a continuous piece-wise linear
function with the piece-wise constant slope that vanishes at x0 and x0 +
ε. Only the values of its derivative and measures of the intervals of the
constancy affect the increment.

Remark 1.2 Convexity of the Lagrangian does not guarantee the existence of a
solution to a variational problem. It states only that a differentiable minimizer (if
it exists) is optimal with fine-scale perturbations. However, the minimum may not
exist at all or be unstable to other variations.

If the solution of a variational problem fails the Weierstrass test, then its
cost can be decreased by adding infinitesimal centered wiggles to the solution.
The wiggles are the Weierstrass trial functions, which decrease the cost. In
this case, we call the variational problem ill-posed, and say that the solution is
unstable against fine-scale perturbations.

1.4 Null-Lagrangians and convexity

Find the Lagrangian cannot be uniquely reconstructed from its Euler equation.
Similarly to antiderivative, it is defined up to some term called null-Lagrangian.
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Definition 1.1 The Lagrangians φ(x, u, u′) for which the operator S(φ, u) of the
Euler equation (??) identically vanishes

S(φ, u) = 0 ∀u

are called Null-Lagrangians.

Null-Lagrangians in variational problems with one independent variable are
linear functions of u′. Indeed, the Euler equation is a second-order differential
equation with respect to u:

d

dx

(
∂

∂u′
φ

)
− ∂

∂u
φ =

∂2φ

∂(u′)2
· u′′ + ∂2φ

∂u′∂u
· u′ + ∂2φ

∂u∂x
− ∂φ

∂u
≡ 0. (20)

The coefficient of u′′ is equal to ∂2φ
∂(u′)2 . If the Euler equation holds identically,

this coefficient is zero, and therefore ∂φ
∂u′ does not depend on u′. Hence, φ

linearly depends on u′:

φ(x, u, u′) = u′ ·A(u, x) +B(u, x);

A = ∂2φ
∂u′∂u , B = ∂2φ

∂u∂x −
∂φ
∂u .

(21)

Additionally, if the following equality holds

∂A

∂x
=
∂B

∂u
, (22)

then the Euler equation vanishes identically. In this case, φ is a null-Lagrangian.
We notice that the Null-Lagrangian (21) is simply a full differential of a

function Φ(x, u):

φ(x, u, u′) =
d

dx
Φ(x, u) =

∂Φ

∂x
+
∂Φ

∂u
u′;

equations (22) are the integrability conditions (equality of mixed derivatives)
for Φ. The vanishing of the Euler equation corresponds to the Fundamental
theorem of calculus: The equality∫ b

a

dΦ(x, u)

dx
dx = Φ(b, u(b))− Φ(a, u(a)).

that does not depend on u(x) only on its end-points values.

Example 1.6 Function φ = uu′ is the null-Lagrangian. Indeed,we check

d

dx

(
∂

∂u′
φ

)
− ∂

∂u
φ = u′ − u′ ≡ 0.
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Null-Lagrangians and Convexity The convexity requirements of the La-
grangian F that follow from the Weierstrass test are in agreement with the
concept of null-Lagrangians (see, for example [?]).

Consider a variational problem with the Lagrangian F ,

min
u

∫ 1

0

F (x, u, u′)dx.

Adding a null-Lagrangian φ to the given Lagrangian F does not affect the Euler
equation of the problem. The family of problems

min
u

∫ 1

0

(F (x, u, u′) + tφ(x, u, u′)) dx,

where t is an arbitrary number, corresponds to the same Euler equation. There-
fore, each solution to the Euler equation corresponds to a family of Lagrangians
F (x, u, z) + tφ(x, u, z), where t is an arbitrary real number. In particular, a
Lagrangian cannot be uniquely defined by the solution to the Euler equation.

The stability of the minimizer against the Weierstrass variations should be a
property of the Lagrangian that is independent of the value of the parameter t.
It should be a common property of the family of equivalent Lagrangians. On the
other hand, if F (x, u, z) is convex with respect to z, then F (x, u, z) + tφ(x, u, z)
is also convex. Indeed, φ(x, u, z) is linear as a function of z, and adding the term
tφ(x, u, z) does not affect the convexity of the sum. In other words, convexity
is a characteristic property of the family. Accordingly, it serves as a test for the
stability of an optimal solution.

2 Nonlocal conditions

2.1 Distance on a sphere: Columbus problem

This simple example illustrates the use of second variation without a single
calculation. We consider the problem of geodesics (shortest path) on a sphere.

Stationarity Let us prove that a geodesics is a part of the great circle.
Suppose that geodesics is a different curve, or that it exists an arc C,C ′ that is
a part of the geodesics but does not coincide with the arc of the great circle. Let
us perform a variation: Replace this arc with its mirror image – the reflection
across the plane that passes through the ends C,C ′ of this arc and the center
of the sphere. The reflected curve has the same length of the path and it lies on
the sphere, therefore the new path remains a geodesics. On the other hand, the
new path is broken in two points C and C ′ , and therefore cannot be the shortest
path. Indeed, consider a part of the path in an infinitesimal circle around the
point C of breakage and fix the points A and B where the path crosses that
circle. This path can be shorten by a arc of a great circle that passes through
the points A and B. To demonstrate this, it is enough to imagine a human-size
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scale on Earth: The infinitesimal part of the round surface becomes flat and
obviously the shortest path correspond to a straight line and not to a zigzag
line with an angle.

Second variations The same consideration shows that the length of geodesics
is no larger than π times the radius of the sphere, or it is shorter than the great
semicircle. Indeed, if the length of geodesics is larger than the great semicircle
one can fix two opposite points – the poles of the sphere – on the path and turn
on an arbitrary angle the axis the part of geodesics that passes through these
points. The new path lies on the sphere, has the same length as the original
one, and is broken at the poles, thereby its length is not minimal. We conclude
that the minimizer does not satisfy Jacobi test if the length of geodesics is larger
than π times the radius of the sphere. Therefore, geodesics on a sphere is a part
of the great circle that joins the start and end points and which length is less
that a half of the equator’s length.

Remark 2.1 The argument that the solution to the problem of shortest distance
on a sphere bifurcates when its length exceeds a half of the great circle was famously
used by Columbus who argued that the shortest way to India passes through the
Western route. As we know, Columbus wasn’t be able to prove or disprove the
conjecture because he bumped into American continent discovering New World for
better and for worse.

2.2 Sufficient condition for the weak local minimum

We assume that a trajectory u(x) satisfies the stationary conditions and Legen-
dre condition. We investigate the increment caused by a nonlocal variation δu
of an infinitesimal magnitude:

|υ| < ε, |υ′| < ε, variation interval is arbitrary.

To compute the increment, we expand the Lagrangian into Taylor series keeping
terms up to O(ε2). Recall that the linear of ε terms are zero because the Euler
equation S(u, u′) = 0 for u(x) holds. We have

δI =

∫ r

0

S(u, u′)δu dx+

∫ r

0

δ2Fdx+ o(ε2) (23)

where

δ2F =
∂2F

∂u2
(δu)2 + 2

∂2F

∂u∂u′
(δu)(δu′) +

∂2F

∂(u′)2
(δu′)2 (24)

Because the variation is nonlocal, we cannot neglect υ in comparison with υ′.
No variation of this kind can improve the stationary solution if the quadratic

form

Q(u, u′) =

(
∂2F
∂u2

∂2F
∂u∂u′

∂2F
∂u∂u′

∂2F
∂(u′)2

)
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is positively defined,

Q(u, u′) > 0 ∀x on the stationary trajectory u(x) (25)

This condition is called the sufficient condition for the weak minimum. It ne-
glects the relation between δu and δu′ and treats them as two independent trial
functions. If the sufficient condition is satisfied, no trajectory that is smooth
and sufficiently close to the stationary trajectory can increase the objective
functional of the problem compared with the objective at that tested stationary
trajectory.

Notice that the first term ∂2F
∂u′2 is nonnegative because of the Legendre con-

dition.

Problem 2.1 Show that the sufficient condition is satisfied for the Lagrangians

F1 =
1

2
u2 +

1

2
(u′)2 and F2 =

1

|u|
(u′)2

If the sufficient condition is not satisfied, we try to create a variation that
improves the stationary solution. In the next sections, we examine two possi-
bilities: a straightforward arbitrary construction of δu and investigation of the
increment (23) using (24) to compute the increment, or finding of an optimal
shape of such variation (Jacobi condition).

2.3 Nonlocal variations

Here we consider a nonlocal variation of small magnitude. This variation com-
pliment Weierstrass test. As before, our goal is to find whether a particular
variation decreases the cost functional below its stationary value. The tech-
nique is shown using a simplest example.

Consider the following problem:

I = min
u

∫ r

0

(
1

2
(u′)2 − c2

2
u2

)
dx u(0) = 0; u(r) = A (26)

where c > 0 is a constant. The first variation δI i

δI =

∫ r

0

(
u′′ + c2u

)
δu dx

s zero if u(x) satisfies the Euler equation (that turns out to be the equation of
oscillator)

u′′ + c2u = 0, u(0) = 0, u(r) = A. (27)

The stationary solution u(x) is

u(x) =

(
A

sin(cr)

)
sin(cx)

13



The Weierstrass test is satisfied, because the dependence of the Lagrangian on

the derivative u′ is convex, ∂2L
∂u′2 = 1. The sufficient condition of local minimum

is not satisfied because ∂2L
∂u2 = −c2.

Let us show that the stationary condition does not correspond to a minimum
of I is the interval’s length r is large enough. We simply demonstrate a varia-
tion that improves the stationary trajectory by decreasing cost of the problem.
Compute the second variation (24):

δ2I =

∫ r

0

(
1

2
(δu′)2 − c2

2
(δu)2

)
dx (28)

Since the boundary conditions at the ends of the trajectory are fixed, the vari-
ation δu satisfies homogeneous conditions δu(0) = δu(r) = 0.

Let us choose the variation as follow:

δu =

{
εx(a− x), 0 ≤ x ≤ a
0 x > a

where the interval of variation [0, a] is not greater that [0, r], a ≤ r. Computing
the second variation of the goal functional from (28), we obtain

δ2I(a) =
ε2

60
a3(10− c2a2), a ≤ r

The increment δ2I is positive only if

a < rcrit, rcrit =

√
10

c
=

3.16227

c

The most dangerous variation corresponds to the maximal value a = r. This
increment is negative when r is sufficiently large,

r > rcrit.

In this case δ2I(a) is negative, δ2I(a) < 0 We conclude that the stationary
solution does not correspond to the minimum of I if the length of the trajectory
is larger than rcrit.

If the length is smaller than rcrit, the situation is inconclusive. It could still
be possible to choose another type of variation different from considered here
that disproves the optimality of the stationary solution.

The general case is considered in the same manner. To examine a stationary
solution u(x), one chooses a nonlocal variation δu with the conditions δu(α) =
δu(β) = 0, where α ∈ [0, r] and β ∈ [0, r] and compute the integral of the
expression (23).

δ2I =

∫ r

0

δ2F dx

If we succeed to find a variation that makes δ2I negative, the stationary solution
does not correspond to a minimum.

14



2.4 Jacobi variation

The Jacobi necessary condition chooses the most sensitive long and shallow vari-
ation and examines the increment caused by such variation. It complements the
Weierstrass test that investigates stability of a stationary trajectory to strong
localized variations. Jacobi condition tries to disprove optimality by testing
stability against ”optimal” nonlocal variations with small magnitude.

Assume that a trajectory u(x) satisfies the stationary and Legendre condi-
tions but does not satisfy the sufficient conditions for weak minimum, that is
Q(u, u′) in (25) is not positively defined,

S(u, u′) = 0,
∂2F

∂(u′)2
> 0, Q(u, u′) 6> 0

To derive Jacobi condition, we consider an infinitesimal nonlocal variation:
δu = O(ε) � 1 and δu′ = O(ε) � 1 and examine the expression (24) for the
second variation. When an infinitesimal nonlocal variation is applied, the in-

crement increases because of assumed positivity of ∂2F
∂(u′)2 and decreases because

of assumed nonpositivity of the matrix Q. Depending on the length r of the
interval of integration and of chosen form of the variation δu, one of these ef-
fects prevails. If the second effect is stronger, the extremal fails the test and is
nonoptimal.

Jacobi conditions asks for the choice of the best δu of the variation. The
expression (24) itself is a variational problem for δu which we rename here as
v for short; the Lagrangian is quadratic of v and v′ and the coefficients are
functions of x determined at the stationary trajectory u(x) which is assumed to
be known:

δ2I =

∫ r

0

[
Av2 + 2B v v′ + C(v′)2

]
dx, v(0) = v(r) = 0 (29)

where

A =
∂2F

∂u2
, B =

∂2F

∂u∂u′
, C =

∂2F

∂(u′)2

The problem (29) is considered as a variational problem for the unknown vari-
ation v with fixed A, B and C,

min
v: v(0)=v(r)=0

δ2I(v, v′)

Its Euler equation:

d

dx
(Cv′ +Bv)−Av = 0, v(r0) = v(rconj) = 0 [r0, rconj] ⊂ [0, r] (30)

is a solution to Sturm-Liouville problem The point r0 and rconj are called the
conjugate points. The problem is homogeneous: If v(x) is a solution and c is a
real number, cv(x) is also a solution.

15



Jacobi condition is satisfied if the interval does not contain conjugate points,
that is if there is no nontrivial solutions to (30) on any subinterval of [r0, rconj] ⊂
[0, r], that is if there are no nontrivial solutions of (30) with boundary conditions
v(r0) = v(rconj) = 0.

If this condition is violated, than there exist a family of trajectories

U(x) =

{
u+ αv if x ∈ [r0, rconj]
u if x ∈ [0, r]/[r0, rconj]

that deliver the same value of the cost. Indeed, v is defined up to a multiplier:
If v is a solution, αv is a solution too. These trajectories have discontinuous
derivative at the points r0 and rconj. Such discontinuity leads to a contradiction
to the Weierstrass-Erdman condition which does not allow a broken extremal
at these points.

Example 2.1 (Nonexistence of the minimizer: Blow up) Consider again
problem (26)

I = min
u

∫ r

0

(
1

2
(u′)2 − c2

2
u2

)
dx u(0) = 0; u(r) = A

The stationary trajectory and the second variation are given by formulas (27) and
(28), respectively. Instead of arbitrary choosing the second variation (as we did
above), we choose it as a solution to the homogeneous problem (30) for v = δu

v′′ + c2v = 0, r0 = 0, u(0) = 0, u(rconj) = 0, rconj ≤ r (31)

This problem has a nontrivial solution v = ε sin(cx) if the length of the interval
is large enough to satisfy homogeneous condition of the right end. We compute
crconj = π or

r(conj) =
π

c

The second variation δ2I is positive when r is small enough,

δ2I =
1

r
ε2
(
π2

r2
− c2

)
> 0 if r <

π

c

In the opposite case r > π
c , the increment is negative which shows that the station-

ary solution is not a minimizer.
To clarify this, let us compute the stationary solution (27). We have

u(x) =

(
A

sin(cr)

)
sin(cx) and I(u) = − A2

sin2(cr)

(
c2 − π2

r2

)
When r increases approaching the value π

c − 0, the magnitude of the stationary
solution indefinitely grows, and the cost indefinitely decreases:

lim
r→ c

π−0
I(u) = −∞
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On the other hand, the cost of the problem is monotonic function of the interval
length r. To show this, it is enough to show that the problem cost for an interval
[0, r] can correspond to an admissible function defined at a larger interval [0, r+d].

The admissible trajectory that correspond to the same cost is easily constructed.
Let u(x), x ∈ [0, r] be a minimizer (recall, that u(0) = 0) for the problem in [0, r],
and let the cost functional be Ir. In a larger interval x ∈ [0, r + d], the admissible
trajectory

û(x) =

{
0 if 0 < x < d
u(x− d) if d ≤ x ≤ r + d

corresponds to the same cost Ir. Therefore, the minimum Ir+d over x ∈ [0, r + d]
is not larger than Ir, or Ir+d ≤ Ir.

Obviously, this trajectory of the Euler equation is not a minimizer if r > π
c ,

because it corresponds to a finite cost I(u) > −∞ .

Remark 2.2 Comparing the critical length rconj = Π
c with the critical length

rcrit =
√

10
c found in Example (2.1) by a guessed (nonoptimal) variation, we see

that an optimal choice of variation improved the length of the critical interval at
only 0.65%.

2.5 Nature does not minimize action

The next example deals with a system of multiple degrees of freedom. Consider
the variational problem with the Lagrangian

L =

n∑
i=1

1

2
mu̇2

i −
1

2
C(ui − ui−1)2, u(0) = u0

We will see later in Chapter ?? that this Lagrangian describes the action of a
chain of particles with masses m connected by springs with constant C. In turn,
the chain models an elastic continuum.

Stationarity is the solution to the system

miüi + C(−ui+1 + 2ui − ui−1), u(0) = u0

That describes dynamics of the chain. The continuous limit of the chain dy-
namics is the dynamics of an elastic rod.

The second variation (here we also use the notation v = δu)

δ2L =

n∑
i=1

1

2
mv̇i

2 − 1

2
C(vi − vi−1)2, v0 = 0, vn = 0

corresponds to the Euler equation – the eigenvalue problem

mv̈ =
C

m
Av

17



where v(t) = [v1(t), . . . , vn(t)] is the vector of variations and

A =


−2 1 0 . . . 0
1 −2 1 . . . 0
0 1 −2 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . −2

 .

The problem has a solution

v(t) =
∑

αkvk sinωkt v(0) = v(Tconj) = 0, Tconj ≤ T

where vk are the eigenvectors, α are coefficients found from initial conditions,
and ωk are the square roots of eigenvalues of the matrix A. Solving the charac-
teristic equation for eigenvalues det(A−ω2I) = 0 we find that these eigenvalues
are

ωk = 2

√
C

m
sin2

(√
C

m

πk

n

)
, k = 1, . . . n

The Jacobi condition is violated if v(t) is consistent with the homogeneous initial
and final conditions that is if the time interval is short enough. Namely, the
condition is violated when the duration T is larger than

T ≥ π

max(ωk)
≈ 2π

√
m

C

.
The continuous limit of the chain is achieved when the number N of masses

indefinitely growth and each mass decreases correspondingly as m(N) = m(0)
N .

The distance between masses decreases, the stiffness of one link increases as
C(N) = C(0)N as it become N times shorter. Correspondingly,√

C(N)

m(N)
= N

√
C(0)

m(0)

and the maximal eigenvalue ωN tends to infinity as N → ∞. This implies
Jacobi condition is violated at any finite time interval, or that action J of the
continuous system is not minimized at any finite time interval.

What is minimized in classical mechanics? Lagrangian mechanics states
that differential equations of Newtonian mechanics correspond to the station-
arity of action: the integral of difference between kinetic T and potential V
energies. Kinetic energy is a quadratic form of velocities q̇i of particles, and
potential energy depends only on positions (generalized coordinates) qi of them

T (q, q̇) =
1

2

n∑
i

q̇TR(q)q̇ V = V (q)
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We assume that T is a convex function of q and q̇, and V is a convex function
of q.

As we have seen at the above examples, action L = T − V does not satisfy
Jacobi condition because kinetic and potential energies, which both are convex
functions or q and q̇, enter the action with different signs. Generally, the action
is a saddle function of q and q̇. The notion that Newton mechanics is not
equivalent to minimization of a universal quantity, had significant philosophical
implications, it destroyed the hypothesis about universal optimality of the world.

The minimal action principle can be made a minimal principle, in the Minkovski
space. Formally, we replace time t with the imaginary variable t = iτ and use
the second-order homogeneity of T :

T (q, q̇) =
1

2
q̇TR(q)q̇ = −q′τ

T
R(q)q′τ

The Lagrangian, considered as a function of q and q′τ instead of q and q̇, become
a negative of a convex function if potential energy V and inertia R(q) are convex.
It become formally equal to the first integral (the energy)

L(q, q′τ ) = −q′τ
T
R(q)q′τ − V (q)

that is conserved in the original problem.
The local maximum of the variational problem, or

J = −min
q(τ)

∫ t

t0

(−L(q, q′τ ))dτ

does exist, since the Lagrangian −L(q, q′τ ) is convex with respect to q and q′τ .

Example 2.2 The Lagrangian L for an oscillator

L =
1

2

(
mu̇2 − Cu2

)
becomes

L̂ = −1

2

(
mu′

2
+ Cu2

)
.

The Euler Equation for L̂
mu′′ − Cu = 0

corresponds to the solution

u(τ) = A cosh(ωτ) +B sinh(ωτ), ω =

√
C

m

The stationary solution satisfies Weierstrass and Jacobi conditions. Returning to
original notations t = iτ we obtain

A cos(ωt) +B sin(ωt)

the correct solution of the original problem. Remarkable, that this solution is un-
stable, but its transform to Minkovski space is stable.

These ideas have been developed in the special theory of relativity (world lines).
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