HW 4 Calc. Variation 2013

Due in two weeks, at March 8

1. Check the Weierstrass condition and find a minimizing sequence that brings the goal to zero

$$
\inf _{u(0)=u(1)=0} \int_{0}^{1} F\left(u, u^{\prime}\right) d x, \quad F=\min \left\{\left(u^{\prime}-1\right)^{2},\left(u^{\prime}+1\right)^{2}\right\}+u^{2}
$$

What is the minimizing sequence if the boundary conditions are
(a) $u(0)=10, u(1)=1$
(b) $u(0)=.5, u(1)=0$.
2. Using cylindrical coordinates (r, θ, z), find the geodesic (shortest path) on the cylinder $r=1$ that joints the points $(1,0,0)$ and $(1, \pi, 1)$. Show that a family of helixes corresponds to stationary solution. Select the true geodesics by using Jacobi condition.
3. Derive the convex envelope of the following functions

$$
f_{1}\left(x_{1}, x_{2}\right)= \begin{cases}0 & \text { if } x_{1}=0, x_{2}=0 \\ 1+x_{1}^{2}+x_{2}^{2} & \text { if } x_{1}^{2}+x_{2}^{2} \neq 0\end{cases}
$$

and

$$
\begin{array}{r}
f_{2}\left(x_{1}, x_{2}\right)=\min \left\{\left(x_{1}+1\right)^{2}+\left(x_{2}+1\right)^{2},\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2},\right. \\
\left.\left(x_{1}+1\right)^{2}+\left(x_{2}-1\right)^{2},\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}\right\}
\end{array}
$$

(In the last case, the envelope is a multiface surface.) Qualitatively describe how the convex envelope in the proximity of $(0,0)$ changes if the component $\left(x_{1}+1\right)^{2}+\left(x_{2}+1\right)^{2}$ is replaced by $\left(x_{1}+1\right)^{2}+\left(x_{2}+1\right)^{2}+\epsilon$, where $|\epsilon| \ll 1$.
Graph the solutions using Maple or similar package.
4. Using Gradient scheme, compute and plot the first five iterations of approximate solution for brachistrochrone problem. The boundary conditions are: $u(0)=1, u(1)=0$. Use a parabola as a first approximation. Compare with the exact solution.

