HW 3

M 5500 Calculus of Variations. Spring 2013
February 4, 2013

1. Derive the Euler-Lagrange equation for the Lagrangian

$$
F=F(x, u, \nabla \times u),
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a point in R_{3} and $u=\left(u_{1}, u_{2}, u_{3}\right)$ is a vector minimizer. Use Stokes theorem for integration by parts. Work on the example

$$
F=(\nabla \times u)^{T}(\nabla \times u)-c^{2} u^{2},
$$

2. Derive the Euler-Lagrange equation for the Lagrangian

$$
F=F(x, u, \nabla \cdot u),
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a point in R_{3} and $u=\left(u_{1}, u_{2}, u_{3}\right)$ is a vector minimizer.
3. Show that $\operatorname{det}(\nabla u(x))$ is a Null-Lagrangian, if $x=\left(x_{1}, x_{2}, x_{3}\right)$ is a point in R_{3} and $u=\left(u_{1}, u_{2}, u_{3}\right)$.
4. Elastic energy of the bending plate is given by the formula

$$
E=\frac{D}{2}\left[\left(\frac{\partial^{2} w}{\partial x_{1}^{2}}+\frac{\partial^{2} w}{\partial x_{2}^{2}}\right)^{2}-2(1-\nu)\left(\frac{\partial^{2} w}{\partial x_{1}^{2}} \frac{\partial^{2} w}{\partial x_{2}^{2}}-\left(\frac{\partial^{2} w}{\partial x_{1} \partial x_{2}}\right)^{2}\right)\right]
$$

Derive Euler-Lagrange equation and natural boundary conditions (conditions at the free edge). Discuss the dependence on ν and identify null-Lagrangian in the energy.

