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1. Derive the Euler-Lagrange equation for the Lagrangian

F = F (x, u,∇× u),

where x = (x1, x2, x3) is a point in R3 and u = (u1, u2, u3) is a vector
minimizer. Use Stokes theorem for integration by parts. Work on the
example

F = (∇× u)T (∇× u)− c2u2,

2. Derive the Euler-Lagrange equation for the Lagrangian

F = F (x, u,∇ · u),

where x = (x1, x2, x3) is a point in R3 and u = (u1, u2, u3) is a vector
minimizer.

3. Show that det(∇u(x)) is a Null-Lagrangian, if x = (x1, x2, x3) is a
point in R3 and u = (u1, u2, u3).

4. Elastic energy of the bending plate is given by the formula
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Derive Euler-Lagrange equation and natural boundary conditions (con-
ditions at the free edge). Discuss the dependence on ν and identify
null-Lagrangian in the energy.
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