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1 Duality

1.1 Legendre and Young-Fenchel transforms

Duality in calculus of variation is closely related to the duality in the theory
of convex function; both use the same algebraic means to pass to the dual
representation. Here we review the Legendre and Young-Fenchel transforms
that serve to compute the dual Lagrangian. Namely, the minimization problem
(??) in (??) is an algebraic one

FD(x, p, p′) = min
u,v

(F (u, v)− [u, v] · [p, p′]) (1)

In this problem, we view arguments p and p′ as independent variables. This
special algebraic transform is studied in convex analysis, it is called Young-
Fenchel transform. If F is convex, the transform is called Legendre transform.
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Definition 1.1 Let us define F ∗(z∗)–the conjugate to the F (z)–by the relation

F ∗(z∗) = max
z
{z∗ z − F (z)} , (2)

which implies that z∗ is an analog of p (compare with (12)).

Geometric interpretation Consider graph of a convex function y = f(z).
Assume that a straight line az+b touches approaching it from below moving up
(that is, increasing b). When the line touches the graph, it becomes a tangent
line to a f(z), that is

a = f ′(z0), y − f(z0) = f ′(z0)(z − z0)

for some z0. The intersection of the tangent y = az+ b with the axis OY occurs
in the point y = b, or

y(0) = f(z0)− f ′(z0)z0

Comparing with (2), we conclude that F (z∗) = −y(0) Then change the angle
and repeat the experiment for all angles a = f ′ that is for all a ∈ R.

The relation −b(a) between b and a is called the conjugate or the Young-
Fenchel transform of the original function f(x).

Example 1.1 (Find a conjugate) Assume that f(z) = 1
pz
p We compute the

conjugate:

z∗ = f ′(z) = zp−1, z = (z∗)
1
p−1 ,

and

f∗(z∗) = z z∗ − f(z) = (z∗)
1+ 1

p−1 − 1

p
(z∗)

p
p−1 =

1

q
(z∗)

q

where q = p
p−1 (notice that 1

p + 1
q = 1).

Young–Fenchel transform The described geometric procedure does not re-
quire dirrecetiability of convexity of f(z). It is called Young–Fenchel transform
and it is defined and finite for a larger class of non-differentiable functions,
namely, for any Lagrangian that grows not slower than an affine function:

L(z) ≥ c1 + c2‖z‖ ∀z, (3)

where c1 and c2 > 0 are constants.

Example 1.2 (Find a conjugate) Consider

F (x) = |x|. (4)

From (2) we have

F ∗(x∗) =

{
0 if |x∗| < 1,
∞ if |x∗| > 1.

(5)
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Example 1.3 (Find a conjugate) Consider

F (x) = exp(|x|). (6)

From (2) we have

F ∗(x∗) =

{
(|x∗|(log |x∗| − 1) if |x∗| > 1,

0 if |x∗| > 1.
(7)

Example 1.4 (Find a conjugate)

F (x) =

{
1
2 (|x| − 1)2 if |x| ≥ 1
0 if |x| ≥ 1

. (8)

We compute

F ∗(x∗) =
1

2
(|x∗|+ 1)2 − 1

2
(9)

Multivariable example?
Observe that a corner point corresponds to a straight interval and vice versa.

Nonconvex parts of the graph of F (x) do not affect the conjugate.

Conjugate of a nonconvex function

f(x) =
1

2
min

{
(x− a)2, (x+ a)2

}
, a > 0

is

f∗(x∗) =
1

2
(x∗)2 + a|x∗|

If the function f(x) is nonconvex growths slower than a linear, the dual may be
found by considering the limit of the dual functions to the family

g(x,R) =

{
f(x), if |x| ≤ R
+∞ if |x| > R

For example
f(x) =

√
|x|+ a

is
f∗(x∗) = a

Algebraic features of the Legendre transform

1. The conjugate of g = af(x) + b is g∗ = f∗
(
x∗−b
a

)
2. The conjugate of g(x) = f(a x) is g∗ = f∗

(
x∗

a

)
3. The conjugate of g(x+ a) = f(a x) is g∗ = f∗ (x∗)− a x∗
4. The conjugate of g(x) = f−1(x) is g∗ = −x∗f∗

(
1
a

)
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1.2 Second conjugate and convexification

It is easy to estimate minimum of a function from above:

f(xa) ≥ min
x
f(x)

where xa is any value of an argument. The lower estimate is much more difficult.
Duality can be used to estimate the minimum from below. The inequality

xx∗ ≤ f(x) + f∗(x∗), ∀x, x∗

provides the lower estimate:

f(x) ≥ xx∗ − f∗(x∗) ∀x, ∀x∗

Choosing a trial value x∗ we find the lower bound.

Second conjugate We can compute the conjugate to F ∗(z∗), called the sec-
ond conjugate F ∗∗ to F ,

F ∗∗(z) = max
z∗
{z∗ · z − F ∗(z∗)} . (10)

We denote the argument of F ∗∗ by z.
If F (z) is convex, then the transform is an involution.

F ∗∗(z) = F (z) ∀ convex F

If F (z) is not convex, the second conjugate is the convex envelope of F (see
[?]):

F ∗∗ = CF. (11)

The convex envelope of F is the maximal of the convex functions that does not
surpass F .

1.3 Hamiltonian as a dual transform of Lagrangian

The classical version of the duality relations is based on the Legendre transform
of the Lagrangian. Consider the Lagrangian L(x, u, u′) that is convex with
respect to u′. Consider an extremal problem

max
u′
{p u′ − L(x, u, u′)} (12)

that has a solution satisfying the following equation:

p =
∂L

∂u′
. (13)

The variable p is called the dual or conjugate to the “prime” variable u; p is also
called the impulse. Equation (13) is solvable for u′, because L(., ., u′) is convex.
We have

u′ = φ(p, u, x). (14)

These relations allow us to construct the Hamiltonian H of the system.
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Definition 1.2 The Hamiltonian is the following function of u, p, and x:

H(x, u, p) = p φ(p, u, x)− L(x, u, φ(p, u, x)). (15)

The Euler equations and the dual relations yield to exceptionally symmetric
representations, called canonical equations

u′ = −∂H
∂p

, p′ =
∂H

∂u
. (16)

Generally, u and p are n-dimensional vectors. The canonical relations are
given by 2n first-order differential equations for two n-dimensional vectors u
and p.

The dual form of the Lagrangian can be obtained from the Hamiltonian
when the variable u is expressed as a function of p and p′ and excluded from
the Hamiltonian. The dual equations for the extremal can be obtained from
the canonical system if it is reduced to a system of n second-order differential
equations for p.

Example 1.5 (Quadratic Lagrangian) Find a conjugate to the Lagrangian

F (u, u′) =
1

2
σ(u′)2 +

γ

2
u2. (17)

The impulse p is

p =
∂F

∂u′
= σu′.

Derivative u′ is expressed through p as

u′ =
p

σ
.

The Hamiltonian H is

H =
1

2

p2

σ
− γu2.

The canonical system is

u′ =
p

σ
, p′ = γu,

and the dual form F ∗ of the Lagrangian is obtained from the Hamiltonian using
canonical equations to exclude u, as follows:

F ∗(p, p′) =
1

2

(
p2

σ
− 1

γ
(p′)

2
)
.

The Legendre transform is an involution: The variable dual to the variable p is
equal to u.
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2 Several variables and Duality

2.1 Several potentials

The next generalization is quite straightforward. Assume that Lagrangian de-
pends on several potentials u = (u1, . . . , un) and on their derivatives: n × d
matrix

∇u =

 ∂u1

∂x1
. . . ∂un

∂x1

. . . . . . . . .
∂u1

∂xd
. . . ∂un

∂xd

 :

as follows: F = F (x, u,∇u). The Euler equation is derived by variation of
each potential independently of the others. The stationary conditions become a
system of n second-order equations for n unknown potentials. It has the same
form as the Euler equations for the scalar case: scalar operations are simply
replaced by vectorial ones and vectorial operations become matrix ones:

∇ · ∂F

∂(∇u)
− ∂F

∂u
= 0

The vector form is

∇ · ∂F

∂(∇ui)
− ∂F

∂ui
= 0, i = 1, . . . , n

and the coordinate form is
d∑
k=1

∂

∂xk

∂F

∂( ∂ui∂xk
)
− ∂F

∂ui
= 0, i = 1, . . . , n

Obviously this system degenerates into (27) when n = 1 and into (27) when
d = 1.

The natural boundary conditions are

Elliptic system for two potentials

F =
1

2
∇u1 ·A1∇u1 +∇u1 ·A12∇u2 +

1

2
∇u2 ·A2∇u2 + φ(u1, u2)

where A1 and A2 are positive symmetric matrices, and the whole system is
positive:

det

(
A1 A12

A12 A2

)
> 0

The Euler equations are

∇ · (A1∇u1 +A12∇u2)− ∂φ

∂u1
= 0

∇ ·
(
AT12∇u1 +A2∇u2

)
− ∂φ

∂u2
= 0

They describe diffusion of two groups of particles that may transform to each
other like groups of fast and slow neutrons in a nuclear reactor model. φ is a
recombination term.
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2.2 Dependence on Curl or divergence

Dependence on Curl Consider the simplest variational problem with La-
grangian F (x, u,∇× u) where u is a vector minimizer.

min
u
I

∫
Ω

F (x, u,∇× u)dx+

∫
∂Ω

f(s, u)ds

We derive Euler equation is a standard manner. Consider the linearized incre-
ment of I:

I(u+ δu)− I(u) =

∫
Ω

(
∂F

∂u
+

∂F

∂(∇× u)
· ∇ × (δu)

)
dx+ o(‖δu‖)

Integrate by parts the last term under integral in the right-hand side of the
previous expression:∫

Ω

∂F

∂(∇× u)
·∇×(δu)dx = −

∫
Ω

∇× ∂F

∂(∇× u)
·δudx+

∫
∂Ω

∂F

∂(∇× u)
×n(δu)ds

Euler equation is

∇× ∂F

∂(∇× u)
− ∂F

∂u
= 0 in Ω (18)

and natural boundary condition is

∂F

∂(∇× u)
× n+

∂f

∂u
= 0

Dependence on Divergence Consider the simplest variational problem with
Lagrangian F (x,u,∇ · u) where u is a vector minimizer.

min
u

I

∫
Ω

F (x,u,∇ · u)dx+

∫
∂Ω

f(s,u)ds

We derive Euler equation is a standard manner. It has the form:

∇
(

∂F

∂(∇ · u)

)
− ∂F

∂u
= 0 in Ω

and natural boundary condition is

∂F

∂(∇ · u)
n+

∂f

∂u
= 0

2.3 Projection approach

Types of variables Let us discuss differential constraints on the vector v.
Usually, v consists of either curlfree or divergencefree vectors. They correspond
to some potentials and are subject to linear differential constraints that express
the integrability. We distinguish three types of minimizers v to the variational
problem:
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1. Potentials: Differentiable variables u, such as temperature or displace-
ment. The Lp norm of all partial derivatives of w is bounded. The
Lagrangian L explicitly depends on these variables and on some partial
derivatives ∂uk

∂xj
of them, L(w,∇w).

2. Nondifferentiable variables f , such as the density of the sources. These
variables belong to Lp spaces, and their partial derivatives are not included
in the Lagrangian.

3. Variables v that represent either curlfree or divergencefree vectors, such
as currents or electrical fields. The differential operators curl, divergence,
strain, depend on certain combinations of partial derivatives ∂uk

∂xj
or on

matrix ∇u They can be viewed as a projection (linear mapping) of n× d
matrix ∇u onto a p dimensional space V of variables v ∈ V:

vi =

n∑
j

d∑
k

aijk
∂uk
∂xj

Notice that projection is defined by three indices: the first shows the
coordinate of the resulting vector v and the second and third point on
the coordinates of the matrix component of the argument. Such arrays
A = {aijk} are called third-rank tensors. The differential form can be
rewritten as

v = A · ∇ · u

In many problem, it is convenient to consider the general projection for-
mula instead of listing of special cases. This type of variable appears
only in multidimensional variational problems. They are the focus of our
consideration.

Here, we derive Euler-Lagrange equation for the general case. Then we
consider examples of the projection tensor A = {aijk}.

Derivation of the Euler-Lagrange equation Assume that the variational
problem takes the form

min
u
I I =

∫
Ω

F (x, u, v)dx+

∫
∂Ω

f(s, u)ds, v = A · ∇ · u

Using Lagrange multipliers vector λ, we rewriter I as

I =

∫
Ω

[F (u, v) + λ(·A · ∇ · u− v)] dx+

∫
∂Ω

f(s, u)ds

Performing variations with respect to v and u, we obtain

δv :
∂F

∂v
− λ = 0 in Ω (19)
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and

δu : Iu =

∫
Ω

[
∂F

∂u
δu+ λ ·A · ∇ · δu

]
dx+

∫
∂Ω

∂f

∂u
ds = 0 (20)

Integration by parts of the underlined term I of Iu leads to:

I =

∫
Ω

λ ·A · ∇ · δudx =

∫
Ω

δu · [−A∗ · ∇ · λ] dx+

∫
∂Ω

[λ ·A · n] · δuds

where A∗ is the third-rank tensor with coefficients

a∗ijk = akji

Substituting the result into (20) and noticing that δu is a free variation, we
obtain the conditions in the domain

δu : −A∗ · ∇ · λ+
∂F

∂u
= 0 in Ω (21)

and on the boundary

λ ·A · n+
∂f

∂u
= 0 on ∂Ω (22)

Finally, we exclude λ from (19) and (22). In order to do it, we multiply
the equality in (19) by A∗ · ∇· from the left, take (21) into account, and obtain
Euler-Lagrange equations:

A∗ · ∇ · ∂F
∂v
− ∂F

∂u
= 0, v = A · ∇ · u in Ω

and boundary terms [
∂F

∂v
·A · n+

∂f

∂u

]
· δu = 0 on ∂Ω

Examples

Example 2.1 Assume that a Lagrangian depends on divergence v = ∇ · u or

d∑
i=1

∂ui
∂xi

= v, (23)

In this case the constraints (??) are set as:

r = 1, g1 = q, aijk = δ1iδik, (24)

where δab is the Kronecker symbol; A is the (1× n× d) tensor.
The tensor operator A∗ · ∇· becomes gradient; The Euler equations are:

∇∂F
∂v
− ∂F

∂u
= 0
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Example 2.2 Consider a three-dimensional solenoidal field v = ∇× u

∂e3

∂x2
− ∂e2

∂x3
= v1,

∂e1

∂x3
− ∂e3

∂x1
= v2,

∂e2

∂x1
− ∂e1

∂x2
= v3.

To rewrite the constraints in the tensor form we set the 3×3×3 tensor A = {aijk}
equal to the Levi-Civita tensor. It has the following nonzero elements:

a132 = a213 = a321 = 1, a123 = a231 = a312 = −1.

In this case, A · ∇· = ∇×, and A∗ · ∇· = ∇×; the Euler equation (??) follows.

Remark 2.1 The form (??) of differential constraints was used for classification
of the variational problems starting from [?, ?, ?]. This form is convenient, but
not imperative. At long last, all the fields are linear combinations of elements of
gradients of some potentials, because they are linear combinations of some partial
derivatives. Therefore, the classical form L(x,w,∇w) of Lagrangian is equivalent
to (??).

2.4 Dual form

Projection approach is applied to find dual variational principles. Instead of
excluding λ from (19) and (22), we solve these equations for u and v:

u = φ(λ, µ), v = ψ(λ, µ),

where
µ = A · ∇ · λ (25)

and substitute these into expressions for extended Lagrangian. In other words,
we perform the Legendre transform of the Lagrangian L(u,v). The obtained
dual Lagrangian

FD(x, λ, µ) = F (x, φ(λ, µ), ψ(λ, µ))− λ · ψ(λ, µ)− µ · φ(λ, µ)

corresponds to the dual variational problem.

ID = max
λ,µ as in (25)

∫
Ω

FD(x, λ, µ)dx

Examples

F =
C

2
(∇× u)2 +

γ

2
(u)2 (26)

We introduce λ to account for the differential constraint and pass to the ex-
pended Lagrangian

L =
C

2
(v)2 +

γ

2
(u)2 + λ · (∇× u− v)
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Optimality conditions are

Cv = λ and γu−∇× λ = 0

From these two equations, we express v and u as functions of λ and ∇× λ:

u =
1

γ
∇× λ, v =

1

C
λ,

and substitute them into (28). The result

FD(λ) =
1

2C
(λ)2 +

1

2γ
(∇× λ)2

is the dual form of the variational problem.

Example 2.3 (Pile of sand) Consider the Lagrangian L = |∇u|+ a u and find
a dual form of it. We rewite the Lagrangian as

L = max
λ

[|v|+ λ(∇u− v|) + a u]

The stationary conditions with respect to u and v are

v

|v|
− λ = 0 ∇ · λ− a = 0

and the dual system is:
|λ| = 1 ∇ · λ = a (27)

Example 2

F =
C

p
(∇u)p +

γ

2
u2 + a u, p > 1 (28)

We introduce vector λ to account for the differential constraint and pass to the
expended Lagrangian

L =
C

p
(v)p +

γ

2
(u)2 + a u+ λ · (∇u− v)

Optimality conditions are

Cvp−1 = λ and γu+ a−∇ · λ = 0

From these two equations, we express v and u as functions of λ

u =
1

γ
(∇ · λ− a), v =

(
λ

C

) 1
p−1

,

and substitute them into (28). The result

FD(λ) = C−
1
p−1 (λ)

p
p−1 +

1

2γ
(∇ · λ− a)2

is the dual form of the variational problem. We rewrite it as:

FD(λ) =
1

2γ
(∇ · λ)2 − a

γ
∇ · λ+

1

C
1
p−1

(λ)
p
p−1 + a2
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2.5 Lower bound

The duality is very important tool because it provide the means to establish
lower bound of the variational problem. The upper bound of it is easy: every
trial function utrial provide such a bound. To find the lower bound, we use the
dual form:

I = max
λ

∫
Ω

FD(x,λ, A∗ · ∇ · λ)dx

This relation implies that any trial function λ correspond to the lower bound
of the functional. The difference of the upper and lower bound provide the
measure of the preciseness of both approximations: The inequalities∫

Ω

FD(x,λ, A∗ · ∇ · λ)dx ≤ I ≤
∫

Ω

F (x,u, A · ∇ · u)dx

hold for any admissible u and λ that satisfy main boundary conditions.

3 Complex conductivity

3.1 Equations of Complex Conductivity

The Process Consider conductivity in a dissipative medium with inductance
and capacity along with resistivity. The current j and the electric field e are
now functions of time and space coordinates. The current is divergencefree, and
the field is curlfree:

∇ · j = 0, ∇× e = 0. (29)

These constraints allow us to introduce a vector potential a of the current field
j and a scalar potential φ of the electrical field e through the relations

j = ∇× a, e = −∇φ. (30)

Consider a body Ω occupied by a conducting material and suppose that this
body is loaded on the boundary S = ∂Ω. The boundary conditions are similar
to those for a conducting material (see Chapter 4)

φ = φ0 on S1, n · j = j0 on S2, S1 ∪ S2 = S, (31)

where n is the normal.
Assume that the properties of the material are local in space and in time:

The current field and its derivatives at a point x ∈ Ω at the moment t depend
only on the electrical field and its derivatives at the same point at the same
moment of time. Assume that the material is linear in the following sense: A
linear combination of the current and its time derivatives linearly depends on a
linear combination of the field and its time derivatives:∑

k

ak
∂kj

∂tk
=
∑
k

bk
∂ke

∂tk
. (32)
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Here ak = ak(x) and bk = bk(x) are some time-independent coefficients, which
are scalars (for the isotropic conductors) or symmetric matrices (for the anisotropic
ones). The properties of the material (i.e., the scalar or matrix parameters
ak, bk) do not depend on time.

Monochromatic Excitation Consider steady-state oscillations in a dissipa-
tive medium caused by a monochromatic excitation. The electrical field and
current in the material are also monochromatic, i.e.,

js(x, t) = (J(x)eiωt)′ = J ′(x) cosωt+ J ′′(x) sinωt,

es(x, t) = (E(x)eiωt)′ = E′(x) cosωt+E′′(x) sinωt,

where Φ0(s), J0(s), J(x), and E(x) are the complex-valued Fourier coefficients
of corresponding functions, and s is the coordinate along the boundary. Here,
the real and imaginary parts of variables are denoted by the superscripts ′ and
′′, i.e., c = c′ + ic′′.

The Complex-Valued Conductivity Equations The linearity of the con-
stitutive relations (32) leads to a linear relationship between the vectors J(x)
and E(x):

J = σE, (33)

where σ = σ(ω) = σ′(ω)+iσ′′(ω) is a complex conductivity tensor that depends
on the frequency of oscillations [?]. For an isotropic material with state law (32),
the tensor σ is defined by

σ =

∑
k(−iω)kak∑
k(−iω)kbk

I, (34)

where I is a unit matrix.
The divergencefree nature of the current field and the curlfree nature of the

electrical field means that the Fourier coefficients of these fields satisfy relations
similar to (29)

∇ · J = 0, ∇×E = 0. (35)

Therefore, they allow the representation (see (30))

J = ∇×A, E = −∇Φ, (36)

where A and Φ are the Fourier coefficients of the potentials a and φ.
The boundary conditions (31) lead to the relations

Φ = Φ0 on S1, n · J = J0 on S2, S1 ∪ S2 = S, (37)

where Φ0 and J0 are the Fourier coefficients of the functions φ0 and j0.
A harmonic oscillation in the conducting media is described by the constitu-

tive relations (33) and differential equations (35), (36) in conjunction with the
boundary conditions (37).
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The System of Real First-Order Equations The complex-valued equa-
tions (33), (35), (36), and (37) describe the conductance of the medium. They
look exactly like the equations for the real conductivity; however, they corre-
spond to more complicated processes. Indeed, the complex-valued differential
equations (35) and (36) form a fourth-order system of differential equations for
the real and imaginary parts of the variables J ′ and E,

∇ · J ′ = 0, ∇ · J ′′ = 0, ∇×E′ = 0, ∇×E′′ = 0. (38)

These equations are identically satisfied if the following potentials are intro-
duced:

J ′ = ∇×A′, J ′′ = ∇×A′′, E′ = −∇Φ′, E′′ = −∇Φ′′. (39)

The currents and electrical fields are connected by the constitutive relations
(33)

−J ′ = −σ′E′ + σ′′E′′,
J ′′ = σ′′E′ + σ′E′′.

(40)

The vector form of the last equations is(
−J ′
J ′′

)
= DEE

(
E′

E′′

)
, (41)

where the block-matrix

DEE =

(
−σ′ σ′′

σ′′ σ′

)
(42)

is the conductivity matrix of the medium. (Recall that σ′ and σ′′ are d × d
matrices of properties)

The boundary conditions (37) can be rewritten as

Φ′ = Φ′0 on S1, (43)

Φ′′ = Φ′′0 on S1, (44)

n · J ′ = J ′0 on S2, (45)

n · J ′′ = J ′′0 on S2. (46)

The formulated system of the real-valued differential equations and boundary
conditions describes the conductivity of the complex conducting medium. No-
tice that it has double dimensions compared to the real conductivity problem.

The conductivity is defined by two tensors σ′ and σ′. The real part σ′ is
nonnegative,

σ′ ≥ 0, (47)

because the dissipation rate is nonnegative. Indeed, the energy dissipation av-
eraged over the period of oscillations is equal to:

ω

2π

∫ t+ 2π
ω

t

js · esdt =
1

2
(J ′ ·E′ + J ′′ ·E′′) =

1

2
(E′ · σ′E′ +E′′ · σ′E′′) (48)

(see [?]). The condition (47) expresses the positiveness of the dissipation rate.
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Real Second-Order Equations The system (39), (40) of four first-order dif-
ferential equations can be rewritten as a system of two second-order equations.
We do it in four different ways, and we end up with four equivalent systems.
Each of them turns out to be Euler–Lagrange equations for a variational prob-
lem.

First, we express the fields though scalar potentials Φ′ and Φ′′ and take the
divergence (∇·) of the right- and left-hand sides of (40). The left-hand-side
terms ∇ · j′,∇ · j′′ vanish and we obtain:

0 = ∇ · [−σ′∇Φ′ + σ′′∇Φ′′],
0 = ∇ · [ σ′′∇Φ′ + σ′∇Φ′′].

Thus we obtain two second-order equations for two potentials Φ′ and Φ′′. The
vector form of this system is(

0
0

)
=

(
∇· 0
0 ∇·

)
DEE

(
∇Φ′

∇Φ′′

)
. (49)

We may also rewrite this system of equations taking any other pair of four
scalar and vector potentials (39) and excluding the other two. For example, let
us exclude the fields E′ and E′′. First, we solve equations (40) for E′ and E′′:(

E′

E′′

)
= DJJ

(
−J ′
J ′′

)
, (50)

where

DJJ =

(
−(σ′ + σ′′σ′

−1
σ′′)−1 (σ′′ + σ′σ′′

−1
σ′)−1

(σ′′ + σ′σ′′
−1
σ′)−1 (σ′ + σ′′σ′

−1
σ′′)−1

)
. (51)

(Note that DEE = D−1
JJ .)

Take the curl (∇×) of the right- and left-hand sides of both equations (50).
The left-hand-side terms identically vanish, and we obtain two vector equations:(

0
0

)
=

(
∇× 0

0 ∇×

)
DJJ

(
−∇×A′
∇×A′′

)
. (52)

Here we use the representation (39) of current fields J ′ and J ′′ through the
vector potentials A′ and A′′.

We may as well solve (40) for the fields E′ and J ′′ and obtain(
E′

J ′

)
= DJE

(
J ′′

E′′

)
, (53)

where

DJE =

(
(σ′)−1 (σ′)−1σ′′

σ′′(σ′)−1 σ′ + σ′′(σ′)−1σ′′

)
. (54)

Recall that E′ is curlfree and J ′′ is divergencefree. Therefore, by using (38) and
(39) we arrive at the following system of second-order equations:(

0
0

)
=

(
∇× 0

0 ∇·

)
DJE

(
∇×A′
∇Φ′′

)
. (55)
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Similarly, we solve (40) for J ′ and E′′ and obtain(
J ′

E′′

)
= DEJ

(
E′

J ′′

)
, (56)

where

DEJ =

(
σ′ + σ′′(σ′)−1σ′′ −(σ′)−1σ′′

−σ′′(σ′)−1 (σ′)−1

)
. (57)

(Note that D−1
JE = DEJ .)

Again, the operations (∇·) and (∇×) eliminate the corresponding terms on
the left-hand side in equations (56). Applying these operators, we obtain the
second-order system(

0
0

)
=

(
∇· 0
0 ∇×

)
DJE

(
∇Φ′

∇×A′′
)
. (58)

We have written four different forms of the same equations. The systems
(49), (52), (55), and (58) are equivalent to each other and to the original system
(38). Each of them in conjunction with the boundary conditions (43)–(46)
allows us to find the solution that describes the processes in the conducting
medium. We now show that each of them represents the Euler equations for a
corresponding variational problem.

3.2 Quartet of variational principles

Let us establish variational principles for the problem of complex conductiv-
ity. There is no direct complex analogue to the variational principles for the
real-valued problem because the inequalities cannot be considered for complex
variables. However, the real-valued differential equations just described are the
stationary conditions for some real-valued functionals. These functionals lead
to variational principles that describe the complex conductivity processes.

First, we formulate two minimax variational principles. They follow natu-
rally from the equations in the form (49) and (52). Then we obtain two minimal
variational principles based on the equations of the problem in the form (55)
and (58). Finally, we discuss the relation between these four principles, referring
to the procedure of Legendre transform.

The Minimax Variational Principle for the Fields Consider the follow-
ing variational minimax problem:

min
E′′

max
E′

UEE , (59)

where the fields E′, E′′ are subject to the constraints

E′′ = −∇Φ′′, Φ′′ = Φ′′0 on S1,
E′ = −∇Φ′, Φ′ = Φ′0 on S1;
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the functional UEE is

UEE =

∫
Ω

WEE(E′,E′′) +

∫
S2

[Φ′′J ′′0 − Φ′J ′0]; (60)

and

WEE(E′,E′′) =
1

2

(
E′

E′′

)T
DEE

(
E′

E′′

)
. (61)

The matrix DEE is defined in (42).
The vanishing of the first variation with respect to E′, E′′ of the functional

UEE (see (60)) leads to two Euler–Lagrange equations that coincide with (40).
One can check that they coincide with the original system of equations in the
form (49) and with the boundary conditions (45), (46). The boundary conditions
(43), (44) must be assumed at all admissible fields.

To check the sense of optimality of the stationary solution we examine the
sign of the second variation of the functional; see, for example, [?]. The second
variation is the main term of the increment of the functional at the perturbed
solution of the Euler–Lagrange equation. Whereas the first variation is zero at
the solution, the second variation of the cost is proportional to the quadratic
form

(δE , δE′′)TDEE(δE , δE′′).

The functional has a local minimum at the stationary solution if the second
variation is positive, and it has a local maximum at the stationary solution if
the second variation is negative. The sign of the variation is determined by the
matrix DEE .

Here the second variation is neither positive nor negative, because the ma-
trix DEE is neither positive nor negative definite. The stationary solution
corresponds to the saddle point of the functional. The variational problem is of
the minimax type.

The Minimax Variational Principle for the Currents Similarly, one can
derive the Euler–Lagrange equations of the variational problem

max
J ′

min
J ′′

UJJ , (62)

where the fields J ′,J ′′ are

{J ′ : J ′ = ∇×A′, n · J ′ = J ′0 on S2},
{J ′′ : J ′′ = ∇×A, n · J ′′ = J ′′0 on S2};

the functional UJJ is

UJJ =

∫
Ω

WJJ(J ′, J ′′) +

∫
S1

[Φ′′0 n · J
′′ − Φ′0 n · J

′]; (63)

and

WJJ(J ′, J ′′) =
1

2

(
−J ′
J ′′

)T
DJJ

(
−J ′
J ′′

)
. (64)
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The matrix DJJ is defined by (51).
We check that the Euler equations for the functional (63) coincide with

equations (50) that describe the same problem in different notation.
The matrix DJJ is neither positive nor negative definite, hence the sec-

ond variation of the functional UJJ is again neither positive nor negative. We
conclude that the variational problem (63) is of the minimax type.

Remark 3.1 The minimax nature of the variational principles (59) and (62) does
not allow us to apply the technique developed to the bounds. This technique uses
the fact that the energy (i.e., the value of the functional) on any trial field should
exceed the actual energy stored in the material. Therefore the energy on any trial
field provides an upper bound on the actual energy. For the minimax principles
(59), (62), however, the situation is different. Consider, for example, the problem
(59) and let us calculate the energy on trial fields of two potentials Φ′ and Φ′′. The
actual energy is increased if the trial field ∇Φ′′ differs from the optimal one and is
decreased if the other trial field ∇Φ′ is not optimal. The value of the functional
(60) on the trial fields can be lower or higher than the actual energy and cannot
bound the functional (60) from either side.

The First Minimal Variational Principle Consider the following varia-
tional problem for the variables J ′ and E′′:

min
J ′

min
E′′

UJE , (65)

where the fields J ′,E′′ are

{J ′ : J ′ = ∇×A′, n · J ′ = J ′0 on S2},
{E′′ : E′′ = −∇Φ′′, Φ′′ = Φ′′0 on S1};

the functional UJE is

UJE =

∫
Ω

WJE(J ′,E′′)−
∫
S1

n · J ′Φ′0 +

∫
S2

Φ′′J ′′0 ; (66)

and

WJE(J ′,E′′) =
1

2

(
J ′

E′′

)T
DJE

(
J ′

E′′

)
. (67)

The matrix DJE is defined in (54). The first variation of (65) with respect to
J ′ and E′′ coincides with the system of original equations in the form (55) and
the boundary conditions (44), (46).

Note that this time the quadratic form (67) is positive. This follows from the
physically clear condition (47). As we see, this functional is equal to the whole
energy dissipated in the body Ω during one period of oscillation (see (48)).

The second variation δ2UJE of the functional (66) is positive due to the
positivity of the matrix DJE (for physical reasons we always suppose that σ′ ≥
0 or the dissipation rate is positive). For the quadratic functional (66) the
positivity of the second variation is sufficient to guarantee the global minimum
at a stationary point [?].
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The Second Minimal Variational Principle Similarly, we consider the
variational problem

min
J ′′

min
E′

UEJ , (68)

where the fields J ′′,E′ are

{J ′′ : J ′′ = ∇×A′′, n · J ′′ = J ′′0 on S2},
{E′ : E′ = −∇Φ′, Φ′ = Φ′0 on S1};

the functional UEJ is:

UEJ =

∫
Ω

WEJ(E′,J ′′) +

∫
S1

n · J ′′Φ′′0 −
∫
S2

Φ′J ′0; (69)

and

WEJ(E′,J ′′) =
1

2

(
E′

J ′′

)T
DEJ

(
E′

J ′′

)
. (70)

The matrix DEJ is defined in (57)
In considering the first variation of the functional (68), we conclude again

that the Euler equations for the functional (69) coincide with the system of
original equations in the form (58) and the boundary conditions (43), (45).

One could also see that the second variation of this functional is positive if
σ′ ≥ 0.

Remark 3.2 Note that the two variational principles are equivalent:

WJE(J ,E) = WEJ(E,J), (71)

This feature is specific for this problem; usually we meet two different variational
principles of minimization of the potential energy and the complementary energy
(for example, the Dirichlet and Thomson principles).

3.3 Legendre Transform

One can check that the pairs of variational problems, (59) and (62), (65) and
(68), are mutually dual [?]. The matrices associated with the quadratic forms,
(61) and (64), and (67) and (70), are reciprocally inverse, i.e.,

DEE = D−1
JJ , DEJ = D−1

JE . (72)

One could pass from the first integrand in each pair to the second one by taking
the appropriate Legendre transform (see the discussion in Chapters 1 and 2).

To find the relation between the minimax and minimal variational principles
we refer to the duality [?, ?]. Any saddle function f(x, y) of two variables x and
y, corresponds through the Legendre transform x∗ over the first variable x to
the convex function f∗x(x∗, y) of the arguments x∗, y.
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For example, the saddle function

f(x, y) =
a

2
x2 − b

2
y2 (73)

is conjugate in the variable x of the convex function

f∗x(x∗, y) = max
x

[xx∗ − f(x, y)] =
1

2a
(x∗)2 +

b

2
y2.

By using a similar idea, we can take the Legendre transform of the func-
tional (60) over one of its variables (namely, over E′′) and obtain the minimal
variational principle (68). Similarly, we can take the Legendre transform of
the functional (63) over the variable J ′′ and arrive at the minimum variational
principle (65).

The relations between the four described variational problems are illustrated
by the following scheme: The minimax variational principle

min
E′′

max
E′

{
UEE(E′,E′′)

}
(74)

is transformed by the Legendre transform over the variableE′′ into the minimum
variational principle

min
J ′′

min
E′

{
UEJ(E′,J ′′)

}
. (75)

The next Legendre transform over the variable E′ leads to the minimax varia-
tional problem

min
J ′

max
J ′′

{
−UJJ(J ′,J ′′)

}
, (76)

which is equivalent to (62). The next transform over the variable J ′′ leads to
the maximization problem

max
J ′

max
E′′

{
−UJE(J ′,E′′)

}
, (77)

which is equivalent to (65). If we take one more Legendre transform over the
variable J ′, we arrive at a problem that coincides with the one with which we
started.

The same method can be used to formulate the minimization problem for
other problems described by equations with complex coefficients. For example,
the equations of torsion oscillation of a bar made of viscoelastic materials coin-
cide with (29)–(32) with some changes in the definitions of the fields and moduli
[?]. The other important example of the complex moduli problem is given by
viscoelasticity equations.
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