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1 Introduction

Many variational problems ask for a constrained minimum of a functional. There
are several types of constraints that we discuss.

(i) Isoperimetric problem (Section 3). Minimize an integral functional if the
other(s) integral functionals must stay constant. The classic example is the Didi
problem: maximize the encircled area by a robe of a given length.

min
y(x)=∈Y,T

∫ T

0

y(x) dx subject to

∫ 1

0

√
1 + (y′)2 dx subject to φ(u) = 0 (1)

where
Y = {y : u(0) = 0, u(T ) = 0}

In addition, the problem of minimization of the product, ratio, or superpo-
sition of the integrals can be reduced to constrained variational problems, as
described in Section 4. Am example is the problem of the principle eigenfre-
quency that is defined as a ratio between the total potential and kinetic energy
of an oscillating body.

(ii) Problem with constraints imposed at each point of the trajectory (Section
??). The example is a problem of geodesics: minimize the distance of the path
between two points if the path everywhere belongs to a given surface φ(u) = 0.

min
u(t)=U

∫ 1

0

√
1 + (u′)2 dx subject to φ(u) = 0 (2)

where
U = {u = (u1(t), u2(t), u3(t)) : u(0) = A, u(1) = B}

(iii) Problem with differential constraints (Section ??). The simplest variational
problem can be rewrite this way:

min
u(x),v(x)

∫ T

0

F (x, u, v) dx subject to u′ = v (3)

More general differential constraints L(u, u′) = 0 can be imposed as well. A
example is the problem of minimization of the fuel consumption of a vehicle
that moves in the given time T between two points A and B, if the rate of fuel
spend f defines the speed of the vehicle u′ through the differential equation of
the system L(u, u′, f) = 0.

min
f∈F

∫ T

0

f(t) dt subject to L(u, u′f) = 0, u(0) = A, u(T ) = B. (4)

(iv) Control theory include the differential constraints, and inequality of
the set of minimizers called controls. The previous problem becomes a control
theory problem if additionally the rate of spend fuel is bounded everywhere.
where

F = {f : 0 ≤ f(t) ≤ fmax ∀t ∈ [0, T ]}
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In the control theory, the differential constrains are traditionally expressed in
Cauchy form as follows

L(u, u′, f) = 0 ⇔ z′i = g(z1, ..zn, u1, ..um), i = 1, . . . , n

where f ∈ F . This canonical form describe a system of ordinary differential
equation in a standard fashion. Regrettably, it cannot be generalized to partial
differential equations, see discussion in Section??.

2 Lagrange multipliers: Vector problem

2.1 Lagrange Multipliers method

Reminding of the technique discussed in calculus, we first consider a finite-
dimensional problem of constrained minimum. Namely, we want to find the
condition of the minimum:

J = min
x
f(x), x ∈ Rn, f ∈ C2(Rn) (5)

assuming that m constraints are applied

gi(x1, . . . xn) = 0 i = 1, . . .m, m ≤ n, (6)

The vector form of the constraints is

g(x) = 0

where g is a m-dimensional vector-function of an n-dimensional vector x.
To find the minimum, we add the constraints with the Lagrange multipliers

µ = (µ1, . . . µp) and end up with the problem

J = min
x

[
f(x) +

m∑
i

µigi(x)

]
The stationary conditions become:

∂f

∂xk
+

m∑
i

µi
∂gi
∂xk

= 0, k = 1, . . . , n

or, in the vector form
∂f

∂x
+W · µ = 0 (7)

where the m× n Jacobian matrix W is

W =
∂g

∂x
or, by elements, Wnm =

∂gn
∂xm

The system (7) together with the constraints (6) forms a system of n+ p equa-
tions for n+ p unknowns: Components of the vectors x and µ.
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Minimax background Consider again the finite-dimensional minimization
problem

J = min
x1,...xn

F (x1, . . . xn) (8)

subject to one constraint
g(x1, . . . xn) = 0 (9)

and assume that solutions to (9) exist in a neighborhood of the minimal point.
It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

J∗ = min
x1,...xn

max
λ

(F (x1, . . . xn) + λg(x1, . . . xn)) (10)

Indeed, the inner maximization gives

max
λ

λg(x1, . . . xn) =

{
∞ if g 6= 0
0 if g = 0

because λ can be made arbitrary large or arbitrary small. This possibility
forces us to choose such x that delivers equality in (9), otherwise the cost of
the problem (10) would be infinite (recall that x “wants” to minimize J∗). By
assumption, such x exists. At the other hand, the constrained problem (8)-(9)
does not change its cost J if zero (recall, that λg(x) = 0) is added to it. Thereby
J = J∗ and the problem (8) and (9) is equivalent to (10).

Augmented problem If we interchange the sequence of the two extremal
operations in (10), we would arrive at the augmented problem JD

J ≥ JD(x, λ) = max
λ

min
x1,...xn

(F (x1, . . . xn) + λg(x1, . . . xn)) (11)

The interchange of max and min- operations preserves the problems cost if
F (x1, . . . xn) + λg(x1, . . . xn) is a convex function of x1, . . . xn; in this case J =
JD. In a general case, we arrive at an inequality J ≥ JD (see the min-max
theorem in Section ??)

The extended Lagrangian J∗ depends on n + 1 variables. The stationary
point corresponds to a solution to a system

∂L

∂xk
=

∂F

∂xk
+ λ

∂g

∂xk
= 0, k = 1, . . . n, (12)

∂L

∂λ
= g(x) = 0 (13)

The procedure is easily generalized for several constrains. In this case, we add
each constraint with its own Lagrange multiplier to the minimizing function and
arrive at expression (7)
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Example Consider the problem

J = min
x

n∑
i=1

A2
ixi subject to

n∑
i=1

1

xi − k
=

1

c
, xi > k, c > 0, k > 0.

Using Lagrange multiplier λ we rewrite it in the form:

Ja = min
x

n∑
i=1

A2
ixi + λ

(
n∑
i=1

1

xi − k
− 1

c

)
.

From the condition ∂Ja
∂x = 0 we obtain

A2
i −

λ

(xi − k)2
= 0, or

1

xi − k
=
|Ai|√
λ

i = 1, . . . , n.

Substitute these values into expression for the constraint and obtain an equation
for λ

1

c
=

n∑
i=1

1

xi − k
=

1√
λ

n∑
i=1

|Ai|

Solving this equation, we find λ and the minimizer xi

√
λ = c

n∑
i=1

|Ai|, xi = k +

√
λ

|Ai|
,

as well as the optimal value of J :

J = k

n∑
i=1

A2
i + c

(
n∑
i=1

|Ai|

)2

Observe, the minimum is a sum of squares of L2 and L1 norms of the vector
A = [A1, . . . , An].

2.2 Exclusion of Lagrange multipliers and duality

We can exclude the multipliers µ from the system (7) assuming that the con-
straints are independent, that is rank(W ) = m. We project n-dimensional
vector ∇F onto a n−m-dimensional subspace allowed by the constraints, and
require that this projection is zero. The procedure is as follows.

1. Multiply (7) by WT :

WT ∂f

∂x
+WTW · µ = 0, (14)

Since the constraints are independent, m×m matrix WTW is nonsingular,
det(WTW ) 6= 0.
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2. Find m-dimensional vector of multipliers µ:

µ = −(WTW )−1WT ∂f

∂x
,

3. Substitute the obtained expression for µ into (7) and obtain:

(I −W (WTW )−1WT )
∂f

∂x
= 0 (15)

Matrix W (WTW )−1WT is called the projector to the subspace W . Notice
that the rank of the matrix W (WTW )−1WT is equal to m; it has p eigenval-
ues equal to one and n − m eigenvalues equal to zero. Therefore the rank of
I −W (WTW )−1WT is equal to n −m, and the system (15) produces n −m
independent optimality conditions. The remaining m conditions are given by
the constraints (6): gi = 0, i = 1, . . .m. Together these two groups of relations
produce n equations for n unknowns x1, . . . , xn.

Below, we consider several special cases.

Degeneration: No constraints When there is no constraints, W = 0, the
problem trivially reduces to the unconstrained on, and the necessary condition
(15) becomes ∂f

∂x = 0 holds.

Degeneration: n constraints Suppose that we assign n independent con-
straints. They themselves define vector x and no additional freedom to choose
it is left. Let us see what happens with the formula (15) in this case. The
rank of the matrix W (WTW )−1WT is equal to n, (W−1 exists) therefore this
matrix-projector is equal to I:

W (WTW )−1WT = I

and the equation (15) becomes a trivial identity. No new condition is produced
by (15) in this case, as it should be. The set of admissible values of x shrinks
to the point and it is completely defined by the n equations g(x) = 0.

One constraint Another special case occurs if only one constraint is imposed;
in this case m = 1, the Lagrange multiplier µ becomes a scalar, and the condi-
tions (7) have the form:

∂f

∂xi
+ µ

∂g

∂xi
= 0 i = 1, . . . n

Solving for µ and excluding it, we obtain n− 1 stationary conditions:

∂f

∂x1

(
∂g

∂x1

)−1

= . . . =
∂f

∂xn

(
∂g

∂xn

)−1

(16)
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Let us find how does this condition follow from the system (15). This time, W
is a 1× n matrix, or a vector,

W =

[
∂g

∂x1
, . . . ,

∂g

∂xn

]
We have:

rank W (WTW )−1WT = 1, rank(I −W (WTW )−1WT ) = n− 1

Matrix I −W (WTW )−1WT has n − 1 eigenvalues equal to one and one zero
eigenvalue that corresponds to the eigenvector W . At the other hand, optimality
condition (15) states that the vector

∇f =

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
lies in the null-space of the matrix I −W (WTW )−1WT that is vectors ∂f

∂x and
W are parallel. Equation (16) expresses parallelism of these two vectors.

Quadratic function Consider minimization of a quadratic function

F =
1

2
xTAx+ dTx

subject to linear constraints
Bx = β

where A > 0 is a positive definite n×n matrix, B is a n×m matrix of constraints,
d and β are the n- and m-dimensional vectors, respectively. Here, W = B. The
optimality conditions consist ofm constraints Bx = β and n−m linear equations

(I −B(BTB)−1BT )(Ax+ d) = 0

2.3 Duality

Let us return to the constraint problem

J = min
x

max
µ

(F (x) + µT g(x))

with the stationarity conditions,

∇F + µTW (x) = 0

Instead of excluding µ as is was done before, now we do the opposite: Exclude
n-dimensional vector x from n stationarity conditions, solving them for x and
thus expressing x through µ: x = φ(µ). When this expression is substituted
into original problem, the later becomes

JD = max
µ
{F (φ(µ)) + µT g(φ(µ))};
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it is called dual problem to the original minimization problem.
Notice that the dual problem asks for maximization of the goal function,

therefore any admissible vector µ provides the lower bound for JD and, therefore,
for J . Recall, that any admissible vector x provides the upper bound for the
original minimization problem. Therefore, the pair of the admissible vectors x
and u in the corresponding optimization problems give the two-side bounds for
the goal function.

Dual form for quadratic problem Consider again minimization of a quadratic.
Let us find the dual form for it. We solve the stationarity conditionsAx+d+BTµ
for x, obtain

x = −A−1(d+BTµ)

and substitute it into the extended problem:

JD = max
µ∈Rm

{
1

2
(dT + µTB)A−1(d+BTµ)− µTBA−1(d+BTµ)− µTβ

}
Simplifying, we obtain

JD = max
µ∈Rm

{
−1

2
µTBA−1BTµ− µTβ +

1

2
dTA−1d

}
The dual problem is also a quadratic form over the m dimensional vector of La-
grange multipliers µ; observe that the right-hand-side term β in the constraints
in the original problem moves to the sift term in the dual problem. The shift d
in the original problem generates an additive term 1

2d
TA−1d in the dual one.

2.4 Finite-dimensional variational problem

Consider the optimization problem for a finite-difference system of equations

J = min
y1,...,yN

N∑
i

fi(yi, zi)

where f1, . . . , fN are given value of a function f , y1, . . . , yN is the N -dimensional
vector of unknowns, and zi i = 2, . . . , N are the finite differences of yi:

zi = Diff(yi) where Diff(yi) =
1

∆
(yi − yi−1), i = 1, . . . , N (17)

Assume that the boundary values y1 and yn are given and take (17) as con-
straints. Using Lagrange multiplies µ1, . . . , µN we pass to the augmented func-
tion

Ja = min
y1,...,yN ; z1,...,zN

N∑
i

[
fi(yi, zi) + µi

(
zi −

1

∆
(yi − yi−1)

)]
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The necessary conditions are:

∂Ja
∂yi

=
∂fi
∂yi

+
1

∆
(−µi + µi+1) = 0 2 = 1, . . . , N − 1

and
∂Ja
∂zi

=
∂fi
∂zi

+ µi = 0 i = 2, . . . , N − 1

Excluding µi from the last equation and substituting their values into the pre-
vious one, we obtain the conditions:

∂Ja
∂yi

=
∂fi
∂yi

+
1

∆

(
∂fi
∂zi
− ∂fi+1

∂zi+1

)
= 0 i = 2, . . . , N − 1

or, recalling the definition of the Diff -operator,

Diff

(
∂fi+1

∂zi+1

)
− ∂fi
∂yi

= 0 zi = Diff(yi) (18)

One can see that the obtained necessary conditions have the form of the differ-
ence equation of second-order.

Formal passage to differential equation Diff-operator is an approximation
of a derivative and the equation (18) is a finite-difference approximation of the
Euler equation. When N →∞,

Diff(yi)→
dy

dx

and we obtain the differential equation of the second order (the Euler equation):

d

dx

∂F

∂u′
− ∂F

∂u
= 0

for the unknown minimizer – function y(x).

2.5 Inequality constraints

Nonnegative Lagrange multipliers Consider the problem with a constraint
in the form of inequality:

min
x1,...xn

F (x1, . . . xn) subject to g(x1, . . . xn) ≤ 0 (19)

In order to apply the Lagrangian multipliers technique, we reformulate the con-
straint:

g(x1, . . . xn) + v2 = 0

where v is a new auxiliary variable.
The augmented Lagrangian becomes

L∗(x, v, λ) = f(x) + λg(x) + λv2
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and the optimality conditions with respect to v are

∂L∗
∂v

= 2λv = 0 (20)

∂2L∗
∂v2

= 2λ ≥ 0 (21)

The second condition requires the nonnegativity of the Lagrange multiplier and
the first one states that the multiplier is zero, λ = 0, if the constraint is satisfied
by a strong inequality, g(x0) > 0.

The stationary conditions with respect to x

∇f = 0 if g ≤ 0
∇f + λ∇g = 0 if g = 0

state that either the minimum correspond to an inactive constraint (g > 0) and
coincide with the minimum in the corresponding unconstrained problem, or the
constraint is active (g = 0) and the gradients of f and g are parallel and directed
in opposite directions:

∇f(xb) · ∇g(xb)

|∇f(xb)| |∇g(xb)|
= −1, xb : g(xb) = 0

In other terms, the projection of ∇f(xb) on the subspace orthogonal to ∇g(xb)
is zero, and the projection of ∇f(x) on the direction of ∇g(xb) is nonpositive.

The necessary conditions can be expressed by a single formula using the
notion of infinitesimal variation of x or a differential. Let x0 be an optimal point,
xtrial – an admissible (consistent with the constraint) point in an infinitesimal
neighborhood of x0, and δx = xtrial−x0. Then the optimality condition becomes

∇f(x0) · δx ≥ 0 ∀δx (22)

Indeed, in the interior point x0 (g(x0) > 0) the vector δx is arbitrary, and the
condition (22) becomes ∇f(x0) = 0. In a boundary point x0 (g(x0) = 0), the
admissible points are satisfy the inequality ∇g(x0) · δx ≤ 0, the condition (22)
follows from (21).

It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

L∗ = min
x1,...xn

max
λ>0

(F (x1, . . . xn) + λg(x1, . . . xn)) (23)

that differs from (11) by the requirement λ > 0.

Several constraints: Kuhn-Tucker conditions Several inequality con-
straints are treated similarly. Assume the constraints in the form

g1(x) ≤ 0, . . . , gm(x) ≤ 0.
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The stationarity condition can be expressed through nonnegative Lagrange mul-
tipliers

∇f +

m∑
i=1

λi∇gi = 0, (24)

where
λi ≥ 0, λigi = 0, i = 1, . . . ,m. (25)

The minimal point corresponds either to an inner point of the permissible set
(all constraints are inactive, gi(x0) < 0), in which case all Lagrange multipliers
λi are zero, or to a boundary point where p ≤ m constraints are active. Assume
for definiteness that the first p constraints are active, that is

g1(x0) = 0, . . . , gp(x0) = 0. (26)

The conditions (25) show that the multiplier λi is zero if the ith constrain
is inactive, gi(x) > 0. Only active constraints enter the sum in (27), and it
becomes

∇f +

p∑
i=1

λi∇gi = 0, λi > 0, i = 1, . . . , p. (27)

The term
∑p
i=1 λi∇gi(x0) is a cone with the vertex at x0 stretched on the

rays ∇gi(x0) > 0, i = 1, . . . , p. The condition (27) requires that the negative of
∇f(x0) belongs to that cone.

Alternatively, the optimality condition can be expressed through the admis-
sible vector δx,

∇f(x0) · δx ≥ 0 (28)

Assume again that the first p constraints are active, as in (??)

g1(x0) =, . . . ,= gp(x0) = 0.

In this case, the minimum is given by (28) and the admissible directions of δx
satisfy the system of linear inequalities

δx · ∇gi ≥ 0, i = 1, . . . , p. (29)

These conditions are called Kuhn-Tucker conditions, see []

3 Isoperimetric problem

3.1 Stationarity conditions

Isoperimetric problem of the calculus of variations is

min
u

∫ b

a

F (x, u, u′)dx subject to

∫ b

a

G(x, u, u′)dx = 0 (30)
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Applying the same procedure as in the finite-dimensional problem, we reformu-
late the problem using Lagrange multiplier λ:

min
u

∫ b

a

[F (x, u, u′) + λG(x, u, u′)] dx (31)

To justify the approach, we may look on the finite-dimensional analog of the
problem

min
ui

N∑
i=1

Fi(ui,Diff(ui)) subject to

N∑
i=1

Gi(ui,Diff(ui)) = 0

The Lagrange method is applicable to the last problem which becomes

min
ui

N∑
i=1

[Fi(ui,Diff(ui)) + λGi(ui,Diff(ui))] .

Passing to the limit when N →∞ we arrive at (31).
The procedure of solution is as follows: First, we solve Euler equation for

the problem(31)
d

dx

∂

∂u′
(F + λG)− ∂

∂u
(F + λG) = 0.

Keeping λ undefined and arrive at minimizer u(x, λ) which depends on param-
eter λ. The equation ∫ b

a

G(x, u(x, λ), u′(x, λ))dx = 0

defines this parameter.

Remark 3.1 The method assumes that the constraint is consistent with the vari-
ation: The variation must be performed upon a class of functions u that satisfy the
constraint. Parameter λ has the meaning of the cost for violation of the constraint.

Of course, it is assumed that the constraint can be satisfied for all varied func-
tions that are close to the optimal one. For example, the method is not applicable
to the constraint ∫ b

a

u2dx ≤ 0

because this constraint allows for only one function u = 0 and will be violated at
any varied trajectory.

3.2 Dido problem revisited

Let us apply the variational technique to Dido Problem discussed in Chapter
??. It is required to maximize the area A between the OX axes and a positive
curve u(x)

A =

∫ b

a

udx u(x) ≥ 0∀x ∈ [a, b]
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assuming that the length L of the curve is given

L =

∫ b

a

√
1 + u′2dx

and that the beginning and the end of the curve belong to OX-axes: u(a) = 0
and u(b) = 0. Without lose of generality we assume that a = 0 and we have to
find b.

The constrained problem has the form

J = A+ λL =

∫ b

0

(
u+ λ

√
1 + u′2

)
dx

where λ is the Lagrange multiplier.
The Euler equation for the extended Lagrangian is

1− λ d

dx

(
u′√

1 + u′2

)
Let us fix λ and find u as a function of x and λ. Integrating, we obtain

λ
u′√

1 + u′2
= x− C1

where C1 is a constant of integration. Solving for u′ = du
dx , we rewrite the last

equation as

du = ± (x− C1)dx√
λ2 + (x− C1)2

,

integrate it:
u = ∓

√
λ2 + (x− C1)2 + C2

and rewrite the result as

(x− C1)2 + (u− C2)2 = λ2 (32)

The extremal is a part of the circle. The constants C1, C2 and λ can be found
from boundary conditions and the constraints.

To find the length b of the trajectory, we use the transversality condition
(??):

u′
∂F

∂u′
− F |x=b = − λ√

1 + u′2
− u
∣∣∣∣
x=b,u(b)=0

=
λ√

1 + u′2

∣∣∣∣
x=b

= 0

which gives |u′(b)| =∞. We have shown that the optimal trajectory approaches
OX-axis at the point b perpendicular to it. By symmetry, |u′(a)| = ∞ as
well which means that the optimal trajectory is the semicircle of the radius λ,
symmetric with respect to OX-axis. We find λ = L

π , C1 = a+ L
2π , and C2 = 0.
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3.3 Catenoid

The classical problem of the shape of a heavy chain (catenoid, from Latin catena)
was considered by Euler ?? using a variational principle. It is postulated, that
the equilibrium minimizes the potential energy W of the chain

W =

∫ 1

0

gρu ds = gρ

∫ 1

0

u
√

1 + (u′)2dx

defined as the limit of the sum of vertical coordinates of the parts of the chain.
Here, ρ is the density of the mass of the chain, ds is the element of its length,
x and u are the horizontal and vertical coordinates, respectively. The length of
the chain

L =

∫ 1

0

√
1 + (u′)2dx

and the coordinates of the ends are fixed. Normalizing, we put gρ = 1. Formally,
the problem becomes

I = min
u(x)

(W (u) + λL(u)), W (u) + λL(u) =

∫ 1

0

(u+ λ)
√

1 + (u′)2dx

The Lagrangian is independent of x and therefore permits the first integral

(u+ λ)

(
(u′)2√

1 + (u′)2
−
√

1 + (u′)2

)
= C

that is simplified to
u+ λ√
1 + (u′)2

= C.

We solve for u′

du

dx
=

√(
u+ λ

C

)2

− 1

integrate

x = ln

λ+ u+

√(
u+ λ

C

)2

− 1

− lnC + x0

and find the extremal u(x)

u = −C cosh

(
x− x0

C

)
+ λ

The equation – the catenoid – defines the shape of a chain; it also gave the name
to the hyperbolic cosine.
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3.4 Isoperimetric problems for multiple integrals

I =

∫
Ω

F (x, u,∇u)dx.

is minimized subject to the isoperimetric constraint

C =

∫
Ω

G(x, u,∇u)dx = 0 (33)

The problems with isoperimetric constraints are addressed similarly to the
one-variable case.

The augmented Lagrangian AI is constructed by adding the constraint C
with a Lagrange multiplier λ to the Lgrangian I as follows

AI = I + λC =

∫
Ω

(F (x, u,∇u) + λG(x, u,∇u)) dx. (34)

The minimizer u (if exists) satisfies the Euler-Lagrange equation(
∇ · ∂

∂(∇u)
− ∂

∂u

)
(F + λG) = 0 (35)

and the natural boundary condition

n · ∂

∂(∇u)
(F + λG) = 0 on ∂Ω. (36)

If the main boundary condition u = φ on ∂Ω is prescribed, the Euler equation
(35) is solved subject to this boundary condition instead of (36).

Solution depends on parameter λ, u = u(λ), it is defined from the constraint
(33).

Example 3.1 Consider the generalization of the problem of analytic continuation
(Example ??): Find a function u(x) which is equal to a given function φ on the
boundary ∂Ω of Ω and minimizes the integral of the Lagrangian W = 1

2 |∇u|
2 over

the domain Ω. Generalizing the problem, we additionally require to keep the integral
equality ∫

Ω

ρ u dx = 0 (37)

where ρ = ρ(x) is a weight function. The augmented functional is

I =

∫
Ω

(
1

2
|∇u|2 + λρu

)
dx

where λ is the Lagrange multiplier by the constraint (37). The Euler equation is

∆u− λρ = 0 in Ω, u = φ on ∂Ω

15



We solve this equation using the potential theory [?] and treating λ as a known
parameter and obtain u = u(λ). Then, we compute integral of ρu(λ) and solve the
equation (37) for λ. The potential u has the representation

u(x) = λρ

∫
Ω

G(x, ξ)ρ(ξ)dξ +

∫
∂Ω

∂G(x, s)

∂n
φ(s)ds

where G(x, ξ) is the Green’s function for Poisson equation.
Referring to [], we check that

G(x, ξ) =

{ 1
4π

1
|x−ξ| if Ω ⊂ R3

− 1
2π log |x− ξ| if Ω ⊂ R2 . (38)

Substituting this expression for u into (37), we find λ in the closed form,

λ = −

∫
Ω
ρ(x)

(∫
∂Ω

∂G(x,s)
∂n φ(s)ds

)
dx∫

Ω
ρ(x)

(∫
Ω
G(x, ξ)ρ(ξ)dξ

)
dx

3.5 Constrained and Incomplete boundary conditions

In some cases, the exact boundary conditions are not available, but only some
integrals of them, ∫

∂Ω

ψ(u, s)ds = 0. (39)

For example, one may not know the exact potential on boundary components,
but only the average drop of potential between them. Likewise, one may know
the total load on the construction but not the distribution of the load on its
boundary. On the other hand, in order to determine the potential from the
boundary value problem, the pointwise boundary conditions are needed.

This problem can be addressed by the variational method. We require some
point-wise additional boundary conditions that minimize the energy and satisfy
the integral condition (39). This way, one obtains natural boundary condi-
tions from the artificially added optimality requirement and the given integral
constraints. The correspond to the best/worse case scenarios.

The Lagrange multipliers method is used to formulate the problem quite
similar to the previous example. Considering the problem (35) - (36), we add
(39) with the Lagrange multiplier µ and obtain the natural boundary condition
in the form

n · ∂

∂(∇u)
(F + λG) + µ

∂ψ

∂u
= 0 on ∂Ω.

Example 3.2 (Incomplete boundary conditions for a conducting rectangle)
Consider the following problem. A square homogeneous domain Ω with the side a
conducts electric current from the left ∂Ω1 to the right ∂Ω2 parts of the boundary,
while the upper and lower sides ∂Ω3 and ∂Ω4 are insulated. The mean potential
drop between the left side ∂Ω1 and the right side ∂Ω2 is equal to V but the de-
tailed distribution of the potential over the boundary is unknown. We avoid the
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uncertainty requiring that the boundary potentials would minimize the total energy
of the domain. Assuming these boundary conditions, we formulate the variational
problem

min
u

∫
Ω

|∇u|2 dx

subject to constraints ∫
∂Ω1

u ds−
∫
∂Ω2

u ds = V, (40)

We do not pose constraints to account for the insulation condition on the horizontal
parts ∂Ω3 and ∂Ω4 because it is a natural condition that will be automatically
satisfied at the optimal solution.

Accounting for the above constraints (40) with Lagrange multipliers λ we end
up with the variational problem

I = min
u

[∫
Ω

|∇u|2 dx+ λ

(∫
∂Ω1

u ds−
∫
∂Ω2

u ds− V
)]

.

The calculation of the first variation of I with respect to u leads to the Euler
equation in the domain

∆u = 0 in Ω

and the boundary conditions

∂u

∂n
+ λ = 0 on ∂Ω1,

∂u

∂n
− λ = 0 on ∂Ω2,

∂u

∂n
= 0 on ∂Ω3,

∂u

∂n
= 0 on ∂Ω4

One can see that the boundary currents (the normal derivatives of the potential)
are constant for the optimal solution. This is the missing boundary condition.

Finally, we solve the boundary value problem assuming that λ is know. The
potential is an affine function u = C + λx1, where C is a constant. The potential
difference is V = λa, which gives λ = V

a .

Problem 3.1 Consider the previous problem assuming that the domain Ω is a
sector of the annulus r0 ≤ r1, θ0 ≤ θ ≤ θ1 that conducts the fixed total current
from one radial cut to another.

Problem 3.2 Consider the previous problem assuming that the conductivity is
inhomogeneous. Derive the boundary conditions.

4 General form of a variational functional

4.1 Reduction to isoperimetric problem

Lagrange method allows for reformulation of an extremal problem in a general
form as a simplest variational problem. The minimizing functional can be the
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product, ratio, superposition of other differentiable function of integrals of the
minimizer and its derivative. Consider the problem

J = min
u

Φ(I1, . . . , In) (41)

where

Ik(u) =

∫ b

a

Fk(x, u, u′)dx k = 1, . . . n (42)

and Φ is a continuously differentiable function. Using Lagrange multipliers
λ1, λn, we transform the problem (41) to the form

J = min
u

min
I1,...,In

max
λ1,...λn

{
Φ +

n∑
k=1

λk

(
Ik −

∫ b

a

Fk(x, u, u′)dx

)}
. (43)

The stationarity conditions for (43) consist of n algebraic equations

∂Φ

∂Ik
+ λi = 0 (44)

and the differential equation – the Euler equation

S(Ψ, u) = 0(
recall that S(Ψ, u) =

d

dx

∂Ψ

∂u′
− ∂Ψ

∂u

)
for the function

Ψ(u) =

n∑
k=1

λkFk(x, u, u′)

Together with the definitions (42) of Ik, this system enables us to determine
the real parameters Ik and λk and the function u(x). The Lagrange multipliers
can be excluded from the previous expression using (44), then the remaining
stationary condition becomes an integro-differential equation

S(Ψ̄, u) = 0, Ψ̄(Ik, u) =

n∑
k=1

∂Φ

∂Ik
Fk(x, u, u′) (45)

Next examples illustrate the approach.

4.1.1 The product of integrals

Consider the problem

min
u
J(u), J(u) =

(∫ b

a

φ(x, u, u′)dx

)(∫ b

a

ψ(x, u, u′)dx

)
.
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We rewrite the minimizing quantity as

J(u) = I1(u)I2(u), I1(u) =

∫ b

a

φ(x, u, u′)dx, I2(u) =

∫ b

a

ψ(x, u, u′)dx,

apply stationary condition (45), and obtain the condition

I1δI2 + I2δI1 = I2(u)S(φ(u), u) + I1(u)S(ψ(u), u) = 0. (46)

or (∫ b

a

φ(x, u, u′)dx

)−1

S(φ(u), u) +

(∫ b

a

ψ(x, u, u′)dx

)−1

S(ψ(u), u) = 0

The equation is nonlocal: Solution u at each point depends on its first and second
derivatives and integrals of φ(x, u, u′) and φ(x, u, u′) over the whole interval
[a, b].

Example 4.1 Solve the problem

min
u

(∫ 1

0

(u′)2dx

)(∫ 1

0

(u+ 1)dx

)
u(0) = 0, u(1) = a

We denote

I1 =

∫ 1

0

(u′)2dx, I2 =

∫ 1

0

(u+ 1)dx

and compute the Euler equation using (46)

I2u
′′ − I1 = 0, u(0) = 0, u(1) = a.

or

u′′ −R = 0, u(0) = 0, u(1) = a, R =
I1
I2

The integration gives

u(x) =
1

2
Rx2 +

(
a− 1

2
R

)
x,

We obtain the solution that depends on R – the ratio of the integrals of two
function of this solution. To find R, we substitute the expression for u = u(R) into
right-hand sides of I1 and I2,

I1 =
R2

12
+ a2, I2 = − R

12
+

1

2
a+ 1

compute the ratio, I1
I2

= R and obtain the equation for R,

R =
R2 + 12a2

R+ 6a+ 12

Solving it, we find R = 1
2 (3a+ 6±

√
36 + 36a− 15a2).

At this point, we do not know whether the solution correspond to minimum or
maximum. This question is investigated in Chapter ??.
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4.1.2 The ratio of integrals

Consider the problem

min
u
J(u), J(u) =

∫ b
a
φ(x, u, u′)dx∫ b

a
ψ(x, u, u′)dx

.

We rewrite it as

J =
I1
I2
, I1(u) =

∫ b

a

φ(x, u, u′)dx, I2(u) =

∫ b

a

ψ(x, u, u′)dx, (47)

apply stationary condition (45), and obtain the condition

1

I2(u)
S(φ(u), u)− I1(u)

I2
2 (u)

S(ψ(u), u) = 0.

Multiplying this equality by I2 and using definition (47) of the goal functional,
we bring the previous expression to the form

S(φ, u)− J S(ψ, u) = S(φ− Jψ, u) = 0

Observe that the stationarity condition depends on the cost J of the problem.

Example 4.2 Solve the problem

min
u
J(u), J =

∫ 1

0
(u′)2dx∫ 1

0
(u− 1)dx

u(0) = 0, u(1) = a

We compute the Euler equation

u′′ − J = 0, u(0) = 0, u(1) = a.

where

R =
I1
I2
, I1 =

∫ 1

0

(u′)2dx, I2 =

∫ 1

0

(u− 1)dx

The integration gives

u(x) =
1

2
Rx2 +

(
a− 1

2
R

)
x,

We obtain the solution that depends on R – the ratio of the integrals of two
function of this solution. To find R, we substitute the expression for u = u(R) into
right-hand sides of I1 and I2,

I1 =
R2

12
+ a2, I2 = − R

12
+

1

2
a+ 1

compute the ratio, I1
I2

= R and obtain the equation for R,

R =
R2 + 12a2

R+ 6a+ 12

Solving it, we find R = 1
2 (3a+ 6±

√
36 + 36a− 15a2).

At this point, we do not state whether the solution correspond to minimum or
maximum. This question is investigated in Chapter ??.
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4.1.3 Superposition of integrals

Consider the problem

min
u

∫ b

a

R

(
x, u, u′,

∫ b

a

φ(x, u, u′)dx

)
dx

We introduce a new variable I

I =

∫ b

a

φ(x, u, u′)dx

and reformulate the problem as

min
u

∫ b

a

[
R(x, u, u′, I) + λ

(
φ(x, u, u′)− I

b− a

)]
dx

where λ is the Lagrange multiplier. The stationarity conditions are:

S((R+ λφ), u) = 0,
∂R

∂I
− 1

b− a
= 0.

and the above definition of I.

Example 4.3 (Integral term in the Lagrangian) Consider the following ex-
tremal problem posed in “physical terms”: Find the function u(x) at the interval
[0, 1] that is has prescribed values at its ends,

u(0) = 1, u(1) = 0, (48)

has a smallest L2-norm ∫ 1

0

u′2dx

of the derivative u′, and stays maximally close to its averaged over the interval [0, x]
value a,

a =

∫ x

0

u(t)dt (49)

In order to formulate a mathematical extremal problem, we combine the two above
requests on u(x) the into one Lagrangian F equal to the weighted sum of them:

F = u′2 + α

(
u−

∫ 1

0

u(t)dt

)2

, u(0) = 1, u(1) = 0

where α ≥ 0 is a weight coefficient that show the relative importance of the two
criteria. Function u(x) is a solution to the extremal problem

min
u(x), u(0)=1,u(1)=0

∫ 1

0

F

(
u, u′,

∫ 1

0

u(t)dt

)
dx (50)

We end up with the variational problem with the Lagrangian that depends on the
minimizer u, its derivative and its integral.
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Remark 4.1 Formulating the problem, we could include boundary conditions into
a minimized part of the functional instead of postulating them; in this case the
problem would be

min
u(x)

{∫ 1

0

F

(
u, u′,

∫ 1

0

u(t)dt

)
dx+ β1(u(0)− 1)2 + β2u(1)2

}
where β1 ≥ 0 and β2 ≥ 0 are the additional weight coefficients.

We bring the problem (50) to the form of the standard variational problem,
accounting for the equality (49) with the Lagrange multiplier λ; the objective func-
tional becomes

J =

∫ 1

0

(
u′2 + α(u− a)2

)
dx+ λ

(
a−

∫ 1

0

u dx

)
or

J =

∫ 1

0

(
u′2 + α(u− a)2 + λ(a− u)

)
dx

The parameter a and the function u(x) are the unknowns. The stationary condition
with respect to a is

∂J

∂a
=

∫ 1

0

(−2α(u− a) + λ) dx = 2αa+ λ− 2

∫ 1

0

u dx︸ ︷︷ ︸
=a

= 0,

it allows for linking a and λ,
λ = 2(α− 1)a.

The stationary condition with respect to u(x) (Euler equation) is

2u′′ − 2α(u− a)− λ = 0

We exclude λ using the obtained expression for λ, and obtain

2u′′ − 2αu+ a = 0 (51)

The integro-differential system (49) and (51) with the boundary conditions (48)
determines the minimizer.

To solve the system, we first solve (51) and (48) treating a as a parameter,

u(x) =
a

2α
+A sinh(

√
αx) +B cosh(

√
αx)

where

A =
( a

2α
− 1
) cosh(

√
α)

sinh(
√
α)
, B = 1− a

2α
,

and substitute this solution into (49) obtaining the linear equation for the remaining
unknown a. We have

u(x) = c1(x)a+ c2(x)

22



where

c1(x) =
1

2α

(
1 +

cosh(
√
α)

sinh(
√
α)

sinh(
√
αx)− cosh(

√
αx)

)
and

c2(x) =

(
cosh(

√
αx)− cosh(

√
α)

sinh(
√
α)

sinh(
√
αx)

)
and (49) becomes

a = a

∫ 1

0

c1(x)dx+

∫ 1

0

c2(x)dx

which implies

a =

∫ 1

0
c2(x)dx∫ 1

0
c1(x)dx− 1

The general procedure is similar: We always can rewrite a minimization
problem in the standard form adding new variables (as the parameter c in the
previous examples) and corresponding Lagrange multipliers.

Inequality in the isoperimetric condition Often, the isoperimetric con-
straint is given in the form of an inequality

min
u

∫ b

a

F (x, u, u′)dx subject to

∫ b

a

G(x, u, u′)dx ≥ 0 (52)

In this case, the additional condition λ ≥ 0 is added to the Euler-Lagrange
equations (??) according to the (??).

Remark 4.2 Sometimes, the replacement of an equality constraint with the cor-
responding inequality can help to determine the sign of the Lagrange multiplier. For
example, consider the Dido problem, and replace the condition that the perimeter
is fixed with the condition that the perimeter is smaller than or equal to a constant.
Obviously, the maximal area corresponds to the maximal allowed perimeter and the
constraint is always active. On the other hand, the problem with the inequality
constraint requires positivity of the Lagrange multiplier; so we conclude that the
multiplier is positive in both the modified and original problem.

4.2 Homogeneous functionals and Eigenvalue Problem

The next two problems are homogeneous: The functionals do not vary if the
solution is multiplied by any number. Therefore, the solution is defined up to a
constant multiplier.

The eigenvalue problem corresponds to the functional

I1 = min
u

∫ 1

0
(u′)2dx∫ 1

0
u2dx

x(0) = x(1) = 0 (53)
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it can be compared with the problem:

I2 = min
u

∫ 1

0
(u′)2dx(∫ 1

0
udx

)2 x(0) = x(1) = 0 (54)

Do these problem have nonzero solutions?
Consider the problem (53). Because the solution is defined up to a multiplier,

we can normalize it assuming that∫ 1

0

u2dx = 1 (55)

Then the problem takes the form

I1 = min
u

∫ 1

0

(
(u′)2 + λu2

)
dx x(0) = x(1) = 0

where λ is the Lagrange multiplier by the normalization constraint (55). The
Euler equation is

u′′ − λu = 0, x(0) = x(1) = 0

This equation represents the eigenvalue problem. It has nonzero solutions u
only if λ takes special values – the eigenvalues. These values are λn = −(πn)2

where n is a nonzero integer; the corresponding solutions – the eigenfunctions
un – are equal to un(x) = C sin(πnx). The constant C is determined from the
normalization (55) as C =

√
2. The cost of the problem at a stationary solution

un is ∫ 1

0

(u′n)
2
dx = n2π2

The minimal cost I1 corresponds to n = 1 and is equal to I1 = π2

The problem (54) is also homogeneous, and its solution u is defined up a
multiplier. We reformulate the problem by normalizing the solution,∫ 1

0

udx = 1.

The problem (54) becomes

min
u

∫ 1

0

(
(u′)2 + λu)

)
dx x(0) = x(1) = 0

where λ is the Lagrange multiplier by the normalization constraint.
The minimizer u satisfies the Euler equation

u′′ − λ

2
= 0, x(0) = x(1) = 0
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and is equal to u = λ
2x(x− 1). The constraint gives λ = 12 and the objective is∫ 1

0

(u′)2dx =

∫ 1

0

(6− 12x)2dx = 12

These two homogeneous variational problems correspond to different types
of Euler equation. The equation for the problem (53) is homogeneous; it has
either infinitely many solutions or no solutions depending on λ. It can select the
stationary solution set but cannot select a solution inside the set: this is done
by straight comparison of the objective functionals. The problem (54) leads
to hon-homogeneous Euler equation that linearly depend on the constant λ of
normalization. It has a unique solution if the normalization constant is fixed.

Homogeneous with a power functionals To complete the considerations,
consider a larger class of homogeneous with a power p functionals, I(qu) =
qpI(u) where q > 0 is an arbitrary positive number. For example function
I(x) = ax4 is homogeneous with the power four, because I(qx) = aq4x4 =
q4I(x). Here, p 6= 1 is a real number. for all u. For example, the functional can
be equal to

J3(u) =

∫ 1

0
(u′)2dx∣∣∣∫ 1

0
udx

∣∣∣p , x(0) = x(1) = 0, u 6≡ 0 (56)

which implies that it is homogeneous with the power 2 − p, because J3(qu) =
q2−pJ3(u).

The minimization of such functionals leads to a trivial result: Either infu J3 =
0 or infu J3 = −∞, because the positive factor qp can be make arbitrarily large
or small.

More exactly, if there exist u0 such that I(u0) ≤ 0, than infu J3 = −∞;
the minimizing sequence consists of the terms qku0 where the multipliers qk are
chosen so that lim qpk =∞.

If I(u0) ≥ 0 for all u0, than infu J3 = 0; the minimizing sequence again
consists of the terms qku0 where the multipliers qk are chosen so that lim qpk = 0.

Remark 4.3 In the both cases, the minimizer itself does not exist but the mini-
mizing sequence can be built. These problems are examples of variational problems
without classical solution that satisfies Euler equation. Formally, the solution of
problem (56) does not exist because the class of minimizers is open: It does not
include u ≡ 0 and u ≡ ∞ one of which is the minimizer. We investigate the
problems without classical solutions in Chapter ??.

4.3 Constraints in boundary conditions

Constraints on the boundary, fixed interval Consider a variational prob-
lem (in standard notations) for a vector minimizer u. If there are no constrains
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imposed on the end of the trajectory, the solution to the problem satisfies n
natural boundary conditions

δu(b) · ∂F
∂u′

∣∣∣∣
x=b

= 0

(For definiteness, we consider here conditions on the right end, the others are
clearly identical).

The vector minimizer of a variational problem may have some additional
constraints posed at the end point of the optimal trajectory. Denote the bound-
ary value of ui(b) by vi The constraints are

φi(v1, . . . vn) = 0 i = 1, . . . , k; k ≤ n

or in vector form,
Φ(x,v) = 0,

where Φ is the corresponding vector function. The minimizer satisfies these
conditions and n − k supplementary natural conditions that arrive from the
minimization requirement. Here we derive these supplementary boundary con-
ditions for the minimizer.

Let us add the constrains with a vector Lagrange multiplier λ = (λ1, . . . .λk)
to the problem. The variation of v = u(b) gives the conditions

δv ·

[
∂F

∂u′

∣∣∣∣
x=b,u=v

+
∂Φ

∂v
λ

]
= 0

The vector in the square brackets must be zero because of arbitrariness of ν =
δu(b).

Next, we may exclude λ from the last equation (see the previous section
2.2):

λ = −

[(
∂Φ

∂u

)T
∂Φ

∂u

]−1
∂F

∂u′

∣∣∣∣
x=b,u=v

(57)

and obtain the conditionsI − ∂Φ

∂u

T
[(

∂Φ

∂u

)T
∂Φ

∂u

]−1
∂Φ

∂u

 ∂F

∂u′

∣∣∣∣
x=b,u=v

= 0 (58)

The rank of the matrix in the parenthesis is equal to n − k. Together with
k constrains, these conditions are the natural conditions for the variational
problem.

4.3.1 Example

min
u1,u2

∫ b

a

(u′21 + u′22 + u′3)dx, u1(b) + u2(b) = 1, u1(b)− u3(b) = 1,
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We compute

∂F

∂u′
=

 2u1

2u2

1

 ,
∂Φ

∂u
=

 1 1
1 0
0 −1

 ,

(please continue..)

Free boundary with constraints Consider a general case when the con-
straints Φ(x, u) = 0 are posed on the solution at the end point. Variation of
these constrains results in the condition:

δΦ(x, u)|x=b =
∂Φ

∂u
δu+

(
∂Φ

∂x
+
∂Φ

∂u
u′
)
δx

Adding the constraints to the problem with Lagrange multiplier λ, performing
variation, and collecting terms proportional to δx, we obtain the condition at
the unknown end point x = b

F (x, u, u′)− ∂F

∂u′
u′ + λT

(
∂Φ

∂x
+
∂Φ

∂u
u′
)

= 0

where λ is defined in (57). Together with n−k conditions (58) and k constraints,
they provide n+ 1 equations for the unknowns u1(b), . . . , un(b), b.
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