HW 2

m 5500 Calculus of variations, Spring 2013

- 1. Reformulate the minimal surface of revolution problem as a problem for an optimal parametric curve x(t), y(t) (x(t) and y(t) are two minimizers). Solve, show the catenoid and Goldschmidt solutions.
- 2. The thermal equilibrium is described by the boundary value problem for the temperature T(x)

$$\delta T = \gamma(x)T$$
 in Ω , $\frac{\partial T}{\partial n} + \alpha T^4 = T_0$ on $\partial \Omega$,

where γ is the density of heat sources, α is the radiation constant, T_0 is a constant outside temperature.

Write the variational problem which minimizer describes the equilibrium.

3. Find the Euler-Lagrange equation:

$$I = \min_{u: u|_{\partial\Omega} = u_0} \int_{\Omega} |\nabla u|^p dx, \quad \ge 1$$

Consider the case when $p \to \infty$.