HW 2

m 5500 Calculus of variations, Spring 2013

1. Reformulate the minimal surface of revolution problem as a problem for an optimal parametric curve $x(t), y(t)(x(t)$ and $y(t)$ are two minimizers). Solve, show the catenoid and Goldschmidt solutions.
2. The thermal equilibrium is described by the boundary value problem for the temperature $T(x)$

$$
\delta T=\gamma(x) T \quad \text { in } \Omega, \quad \frac{\partial T}{\partial n}+\alpha T^{4}=T_{0} \quad \text { on } \partial \Omega,
$$

where γ is the density of heat sources, α is the radiation constant, T_{0} is a constant outside temperature.
Write the variational problem which minimizer describes the equilibrium.
3. Find the Euler-Lagrange equation:

$$
I=\min _{u:\left.u\right|_{\partial \Omega}=u_{0}} \int_{\Omega}|\nabla u|^{p} d x, \quad \geq 1
$$

Consider the case when $p \rightarrow \infty$.

