m5500 Spring 2015 HW2

Andrej Cherkaev

Approximations

1. Approximate the functions:
a) $f_{1}(x)=\left\{\begin{array}{ll}1 & \text { if } x \in\left[0, \frac{1}{2}\right) \\ 0 & \text { if } x \in\left[\frac{1}{2}, 1\right)\end{array} \quad f_{2}(x)=x^{6} . x \in[0,1]\right.$
with penalties

$$
p_{1}=\epsilon \int_{0}^{1}\left(u^{\prime}\right)^{2} d x \text { and } p_{2}=\epsilon \int_{o}^{1}\left(u^{\prime \prime}\right)^{2} d x
$$

Using Maple or Matlab, plot the graphs of the approximates for different ϵ.
Hint: Use Fourier series to represent f_{1} and f_{2} and to represent the approximate. Compute the coefficients of the approximate.
2. Approximate $f(x)=\sin (x), x \in[0,2 \pi]$ using the penalty functional

$$
P=\epsilon \int_{0}^{2 \pi} F_{\delta}\left(u^{\prime}\right) d x
$$

where

$$
F_{\delta}(x)= \begin{cases}|x| & \text { if }|x| \geq \delta \\ \frac{1}{2 \delta} x^{2}+\frac{\delta}{2} & \text { if }|x| \leq \delta\end{cases}
$$

Plot the approximates.
Hint: Consider three cases: $u^{\prime}>\delta, u^{\prime}<-\delta$, and $\left|u^{\prime}\right|<\delta$.

