HW1

1. Derive the Euler equation. Solve

$$
\min _{u(x), b} \int_{0}^{b}\left(\left(u^{\prime}\right)^{2}+2 x u\right) d x \quad u(0)=0, \quad u(b)=0
$$

2. Derive the Euler equation and boundary conditions. Solve. Find the first integral

$$
\min _{u(x)}\left[\int_{0}^{1}\left(\left(u^{\prime}\right)^{2}-\omega^{2} u^{2}\right) d x+2 u(1),\right] \quad u(0)=0
$$

3. Derive the Euler equation and boundary conditions. Solve. Explain the dependence of the solution on a.

$$
\min _{u(x)} \int_{0}^{b}\left(\left(u^{\prime}\right)^{2}+a u u^{\prime}+u\right) d x \quad u(0)=0
$$

4. Derive the Euler equation and boundary conditions. Solve, using Maple

$$
\min _{u(x)} \int_{0}^{b}\left(\left(u^{\prime \prime}\right)^{2}-a\left(u^{\prime}\right)^{2}+b u\right) d x \quad u(0)=0, \quad u^{\prime}(0)=0
$$

