CalcVar HW 2

Due Monday February 3

1. Solve

$$
\min _{u(x)} \int_{0}^{1}\left(k(x)\left(u^{\prime}\right)^{2}-\omega^{2} u^{2}\right) d x, \quad u(0)=u(1)=1
$$

where

$$
k(x)= \begin{cases}k_{1}, & x<a, \\ k_{2}, & x>2 .\end{cases}
$$

2.

$$
\min _{u(x), b} \int_{0}^{b}\left(u^{\prime 2}+x^{2} u\right) d x, \quad u(0)=0, u(b)=1
$$

3. Derive Euler-Lagrange equation and variational boundary conditions for

$$
\int_{\Omega}\left[(\nabla u-A)^{2}+\frac{1}{u}\right] d x
$$

where Ω is a bounded domain with smooth boundary, and $A=A(x)$ is a given vector field.
4. Knowing that the Euler-Lagrange equation is the boundary-value problem (cooling of the black body)

$$
\nabla^{2} u=0 \text { in } \Omega, \quad \frac{\partial u}{\partial n}+\alpha u^{4}=0 \quad \text { on } \partial \Omega
$$

where n is the normal to the boundary $\partial \Omega$, find the Lagrangian.

