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1 Approximations with Quadratic Stabilizers

Consider the problem of approximation of a function h(x) x ∈ [a, b] by another
function u(x) with better smoothness or other favorable properties. For exam-
ple, we may want to approximate the noisy experimental curve by a smooth
one, or approximate a curve with a blocky piece-wise constant curve. The fol-
lowing method is used for approximations: A variational problem is formulated
to minimize a norm of the difference u− h:

D2 =
1
2

∫ b

a

(u − h)2dx or D1 =
∫ b

a

|u− h|dx
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plus a penalty of the form

P =
∫ b

a

p(u, u′, u′′)dx

The stabilizer P is chosen to penalize the approximation u for being non-smooth
or having large variation. The approximate u(x) balances the closeness to the
approximating curve and the smoothness properties. The problem of the best
approximate is a variational problem for an unknown function u(x) that mini-
mizes the integral functional

min
u(x)

(D + γP ) = min
u(x)

∫ b

a

[(u − h)q + γp(u, u′, u′′)] dx (1)

where γ is a penalty coefficient. Here we consider several problems of the best
approximation.

1.1 Penalized magnitude

A simple penalization p = u2 is proportional to the square of the magnitude of
the approximate u. The approximation problem has the form

min
u(x)

J1(u), J1(u) =
∫ b

a

1
2
(
γu2 + (h− u)2

)
dx (2)

it minimizes the sum of square D2
2 of D2 and the penaltyThe Lagrangian does

not contain derivative u′, therefore the stationarity condition is

d

du

(
γu2 + (h− u)2

)
= 0

We find uγ(x) = 1
1+γh(x) - the approximate u is proportional to h. The penalty

reduces the magnitude of the function. When γ → 0, the approximation coin-
cides with h(x), and when γ → ∞, the approximation uγ = 0,

lim
γ→0

uγ(x) = h(x), lim
γ→∞uγ(x) = 0

1.2 Penalized growth rate

Approximation of the given function h(x) by function u(x) with a limited growth
rate can be formulated as a variational problem

min
u
J2(u), J2(u) =

∫ b

a

1
2
(
γu′ 2 + (h− u)2

)
dx (3)

The first term of the integrant represents the penalty for the growth rate to be
non-constant, and the second term describes the closeness of u and h.
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The equation for the approximate (Euler equation of (3)) is

γu′′ − u+ h = 0, u′(a) = u′(b) = 0 (4)

Here, the natural boundary conditions are assumed since there is no reason to
assign special values of the approximation curve at the ends of the interval.

The approximation depends on the parameter γ, u = uγ . When γ → 0, the
approximation coincides with h(x) and when γ → ∞, the approximation is a
constant curve, equal to the mean value of h(x),

lim
γ→0

uγ(x) = h(x), lim
γ→∞uγ(x) = constant =

1
b− a

∫ b

a

h(ξ)dξ

1.3 Penalized smoothness

The problem of smooth approximation is similar. We choose the penalization
as integral of the square of the second derivative u′′. This functional increases
with deviation of u from a straight line. The corresponding variational problem
can be formulated as

min
u
J(u), J(u) =

∫ b

a

1
2
(
γ(u′′)2 + (h− u)2

)
dx (5)

The equation for the best approximate (Euler equation of (5)) is

γuIV + u− h = 0, u′′(a) = u′′(b) = 0, u′′′(a) = u′′′(b) = 0,

Here, the natural boundary conditions are assumed since there is no reason to
assign special values of the approximation curve at the ends of the interval.

When γ → 0, the approximation coincides with h(x) and when γ → ∞, the
approximation is a straight line closest to h.

Problem 1.1 Find the limit of uγ when γ → ∞

2 Appendix. Methods for linear boundary-value
problems

The Euler equation is a linear boundary value problem of the type

Lγ(u) = h

where L is the linear operator of the Sturm-Liuville type, such as Lγ = γu′′−u.
A linear differential equation is defined in the interval [a, b], and the homoge-
neous boundary conditions u′(a) = u′(b) = 0 are posed at the ends. Here we
remind an approach based on the expansion of u into series of eigenfunctions of
the operator Lγ .
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2.1 Spectral method

Solution of linear boundary value problem We briefly comment on so-
lution of the linear Euler equation by spectral method. To solve the problem,
we first find the spectrum of operator Lγ solving the Sturm-Liouville problem:

Lγu = λu, u′(0) = u′(1) = 0.

This problem has nontrivial solutions (u(x) 6≡ 0 everywhere) for only some
values of λ called the eigenvalues λ0, λ1, λ2, . . .. The solutions called the eigen-
functions un(x), satisfy the equations

Lγ un = λnun, n = 1, 2, . . . , .

Eigenfunctions un are defined up to a multiplier and are mutually orthogonal,

〈uk, um〉 = 0, if k 6= m

where the inner product 〈f, g〉 is defined as

〈f, g〉 =
∫ b

a

f(x)g(x) dx.

The system of eigenfunctions is complete. This means that a general solution
can be represented by series

u(x) =
∞∑

n=0

αnun(x)

where αn are arbitrary coefficients. With this representation, the Euler equation
L (u) = h becomes

L(u) = L
( ∞∑

n=0

αnun

)
=

∞∑
n=0

αnλnun = h

To find the coefficients αn, we expand h as follows

h =
∞∑

n=0

βnun

where parameters βn are found from the orthogonality property of un as

βn =
〈h , un〉
〈un, un〉

Comparing the expansions, we obtain the unknown coefficients αn

λnαn = βn or αn =
〈un, h〉

λn 〈un, un〉
and the solution u

u(x) =
∞∑

n=0

〈un, h〉
λn 〈un, un〉un(x).

We observe that the approximate linearly depends on h as expected.
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Example For the operator (??) we have

a2u′′ − u = λu, u′(0) = u′(1) = 0.

Particular solutions (the eigenfunctions) are un = cos (πnx) and the eigenvalues
are λn = (1 + πn2a2). The general solution is

u(x) =
∞∑

n=0

γn cos(πnx)

where γn are arbitrary coefficients. Solving, we obtain

u(x) =
∞∑

n=0

cn
λn

cos(πnx), cn =
∫ 1

0

h(x) cos(πnx)dx

Problem 2.1 Let h(x) be h(x) = |x|. Find u(x). Graph the results.

2.2 Green’s function

Green’s function for approximations with quadratic penalty The so-
lution of a linear boundary value problem is most conveniently done by the
Green’s function. Here we remind this technique.

Consider the linear differential equation with the differential operator L

L(x)u(x) = f(x) x ∈ [a, b], Ba(u, u′)|x=a = 0, Bb(u, u′)|x=a = 0. (6)

an arbitrary external excitation f(x) and homogeneous boundary conditions
Ba(u, u′)|x=a = 0 and Bb(u, u′)|x=a = 0. For example, the problem (??) corre-
sponds to

L(x)u =
(
α2 d

2

dx2
− 1
)
u, Ba(u, u′) = u′, Bb(u, u′) = u′

To solve the equation means to invert the dependence between u and f , that is
to find the linear operator

u = L−1f

In order to solve the problem (6) one solves first the problem for a single con-
centrated load δ(x− ξ) applied at the point x = ξ

L(x)g(x, ξ) = δ(x − ξ), Ba(g, g′)|x=a = 0 Bb(g, g′)|x=a = 0

This problem is usually simpler than (6). The solution g(x, ξ) is called the
Green’s function, it depends on the point of the applied excitation ξ as well as
of the point x where the solution is evaluated. Formally, the Green’s function
can be expressed as

g(x, ξ) = L(x)−1δ(x− ξ) (7)
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Then, we use the identity

f(x) =
∫ b

a

f(x)δ(x − ξ)dξ

(essentially, the definition of the delta-function) to find the solution of (6). We
multiply both sides of (7) by f(ξ) and integrate over ξ from a to b, obtaining

∫ b

a

g(x, ξ)f(ξ)dξ = L−1

(∫ b

a

f(ξ)δ(x− ξ)dξ

)
= L−1f(x) = u(x).

Notice that operator L = L(x) is independent of ξ therefore we can move L−1

out of the integral over ξ.
Thus, we obtain the solution,

u(x) =
∫ b

a

g(x, ξ)f(ξ)dξ

that expresses u(x) as a linear mapping of f(x, ξ) with the kernel G(x, ξ). The
finite-dimentional version of this solution is the matrix equation for the vector
u.

Green’s function for approximation at an interval For the problem (??),
the problem for the Green’s function is(

α2 d
2

dx2
− 1
)
g(x, ξ) = δ(x − ξ), u′(a) = u′(b) = 0

At the intervals x ∈ [a, ξ) and x ∈ (ξ, b] the solution is

g(x, ξ) =
{
g−(x, ξ) = A1 cosh

(
x−a

α

)
if x ∈ [a, ξ)

g+(x, ξ) = A2 cosh
(

x−b
α

)
if x ∈ (ξ, b]

This solution satisfies the differential equation for all x 6= ξ and the boundary
conditions. At the point of application of the concentrated force x = ξ, the
conditions hold

g+(ξ, ξ) = g−(ξ, ξ);
d

dx
g+(x, ξ)

∣∣∣∣
x=ξ

− d

dx
g−(x, ξ)

∣∣∣∣
x=ξ

= 1

that express the continuity of u(x) and the unit jump of the derivative u′(x).
These allow for determination of the constants

A1 = α
cosh

(
ξ−b
α

)
sinh

(
b−a
α

) A2 = α
cosh

(
ξ−a

α

)
sinh

(
b−a
α

)
which completes the calculation.
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Green’s function for approximation in R1 The formulas for the Green’s
function are simpler when the approximation of an integrable in R1 function
f(x) is performed over the whole real axes, or when a → −∞ and b → ∞. In
this case, the boundary terms u′(a) = u′(b) = 0 are3 replaced by requirement
that the approximation u is finite,

u(x) <∞ when x→ ±∞
In this case, the Green’s function is

g(x, ξ) =
1
2α
e−

|x−ξ|
α

One easily check that it safisfies the differential equation, boundary conditions,
and continuity and jump conditions at x = ξ.

The best approximation becomes simply an average

u(x) =
1
2α

∫ ∞

−∞
f(ξ)e−

|x−ξ|
α dξ

3 Approximation with nonquadratic stabilizers

3.1 L1-approxmation with quadratic penalty

The variational problem has the form

min
u
J1(u), J1(u) =

∫ b

a

(
1
2
γ(u′)2 + |u− h|

)
dx (8)

The Euler equation is

u′′ − 1
γ

sign (u− h) = 0, u′(a) = u′(b) = 0 (9)

or, equivalently,

u′′ =
{ 1

γ if u > h

− 1
γ if u < h

The remaining case, u = h, can be viewed as infinitely often alteration of the
two above regimes. It corresponds to the condition 1

γ > |u′′|. This regime exists
only if 1

γ > |h(x)′′|, but not necessarily for all x that satisfy the inequality.
The minimizer u(x) must be combined of these three regimes. The Weierstrass-
Erdmann conditions requests that u(x) and u′(x) are continuous functions. To
summarize, u(x) satisfies the system of relations:

u = h, |u′′| ≤ 1
γ

u < h, u′′ = −γ
u > h, u′′ = γ

, u ∈ C1(a, b) (10)
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Example 3.1 (Discontinuity) Let h(x) be h(x) = sign (x). Check that u(x)
is

u(x) =

{
h(x) = sign (x) if |x| ≥ 1

γ(√
2
γx− x2

2γ sign (x)
)

if |x| < 1
γ

Notice that behavior of h(x) in the proximity of the discontinuity point does
not affect u(x) in that region. Similarly, the value of penalty coefficient γ does
not affect u away from the discontinuity point. This penalization scheme results
in function u(x) that coincides with h(x) away from discountinuities and zones
of large values of h′′. Near these zones, h(x) is smoothed – it is replaced by
parabolas.

Problem 3.1 A. Let h(x) be h(x) = exp(−α|x|). Find u(x). Graph the results.

Problem 3.2 B. Let h(x) be h(x) = cos(αx). Find u(x). Consider different
cases depending on the value of α ∈ R. Graph the results.

3.2 Approximation with penalized total variation

This approximation penalizes the function for its variation. The total variation
TV (f) of a function u(x) is defined as

TV (u) =
∫ b

a

|u′(x)|dx

For a monotonic function u(x) one evaluates the integral and finds that

TV (u) = max
x∈[a,b]

u(x) − min
x∈[a,b]

u(x)

If u(x) has N intervals Lk of monotonicity (N <∞), the total variation is

TV (u) =
N∑
k

(
max
x∈Lk

u(x) − min
x∈Lk

u(x)
)

The variational problem with total-variation penalty has the form

min
u
J3(u), J3(u) =

∫ b

a

1
2
(
γ|u′| + (u− h)2

)
dx (11)

Here, γ ≥ 0, the first term of the integrant represents the total-variation penalty
and the second term describes the closeness of the original curve and the ap-
proximate. When γ → 0, the approximation coincides with h(x), and when
γ → ∞, the approximation becomes constant equal to the mean value of h.

The formal application of the stationarity technique gives:

(γsign (u′))′ + u = h, sign (u′(a)) = sign (u′(b)) = 0 (12)
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This formula is not very helpful because it requires the differentiation of a dis-
continuous function sign ; besides, the Lagrangian (11) is not a twice-differential
function of u′ as it is required in the procedure of derivation of the Euler equa-
tion.

To deal with this problem, we introduce a family W (u′, ε) such that

lim
ε→0

W (u′, 0) = w(u′),

and W (u′, ε) is twice-differentiable function of u′ for all ε > 0. Particularly, we
can use the family

W1(u′, ε) =
√
u′(x)2 + ε2. (13)

to approximate w(u′) = |u′|.

Remark 3.1 We could also choose another family of functions which derivarive
converges to w(u′) = sign (u′) when parameter ε of the family goes to zero, ε→ 0,
for example

W2(u′(x), ε) =
2
π

∫ x

0

arctan
(
u′(t)
ε

)
dt =

2
π

(
x arctan

x

ε
− 1
ε

log
x2 + ε2

ε2

)
.

(14)
or

W3(u′, ε) =
{ |u′| if |u′| > ε

u′2
2ε + 1

2ε if |u′| < ε
. (15)

The derivatives of these functions are:

∂W1

∂u′
=

u′√
u′(x)2 + ε2

∂W2

∂u′
=

2
π

arctan
(
u′(x)
ε

)
∂W3

∂u′
=
{

sign (u′) if |u′| > ε
u′
ε if |u′| < ε

.

These are continuous functions that tend to the discontinuous function sign(u′)
when ε→ 0.

It need to be shown that the solutions of minimization problem with function
W (u′, ε) converge to the solution of the original problem when ε → 0. If this
is true, than the problem is regularized. This technique is called regularization
method. It allows for construction of solutions even if the original problem is
not well posed. Here, we do not prove but assume the convergence of the family
of solutions.

The regularized Lagrangian is

L(u, u′, ε) = γ
√
u′(x)2 + ε2 +

1
2
(u − f)2
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Now we can compute Euler equation. We have

∂L(u, u′, ε)
∂u′

= γ
u′

(|u′|2 + ε2)
1
2

and the Euler equation is

R(u′, ε)u′′ = u− h, where R(u′, ε) =
ε2

(u′2 + ε2)
3
2

(16)

The second step of procedure is the asymptotic analysis of the stationary ap-
proximate when ε → 0. Coefficient R(u′, ε) reaches its maximum at u′ = 0.
It is or the order of 1

ε , R(0, ε) = 1
ε . R(u′, ε) quickly and monotonically decays

when u′ grows. When u′ =
√
ε, the coefficient R(u′, ε) approximately equals√

ε, and it becomes even smaller for larger values of u′. Indeed, one can check
that R(

√
ε, ε) =

√
ε + o(

√
ε)). We conclude that the stationary condition (16)

can be satisfied (up to the order of ε) in one of two ways.

• When |h′| � ε the solution u = h is stationary. Indeed, in this case
|u′| = |h′| > ε, R(u′, ε) � ε, and first term R(u′, ε)u′′ does not influence
the equation.

• When u(x) is approximately constant, |u′| ≤ ε, the first term is extremely
sensitive to the variation of u′ and it can take any value; in particular,
it can compensate the second term u − h of the equality. The (always)
constant u is another stationary solution.

This sketch shows that in the limit ε → 0, the stationary condition (16) is
satisfied either when u(x) is a constant, u′ = 0, or when u(x) coincides with
h(x).

u(x) = h(x) or u′(x) = 0, ∀x ∈ [a, b]

The approximation cuts the maxima and minima of the approximating func-
tion, which agrees with the expected behavior of TV -penalized approximation.
Indeed, the value of TV (u) depends only on its local maxima and minima and
is invariant to the intermediate values of u(x). Therefore, the equality u = h
does not changes the penalty TV (u) but decreases the terms (u − h)2. Near
the maxima (minima) points, the cut u = constant(x) decreases the penalty
TV (u) and slightly increases the norm of difference of u and h.

Let us find the cutting points. For simplicity in notations we assume that
the function h(x) monotonically increases on [a, b]. The approximation u(x) is
also a monotonically increasing function, u′ ≥ 0 that either coincides with h(x)
or stays constant cutting the maximum and the minimum of h(x):

u(x) =



h(α) if x ∈ [a, α]
h(x) if x ∈ [α, β]
h(β) if x ∈ [β, b]
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The cost of the problem

J =
γ

2

[∫ α

a

(h(x) − h(α))2dx+
∫ b

β

(h(x) − h(β))2dx

]
+ h(β) − h(α)

depends on two unknown parameters, α and β, the coordinates on the cuts.
They are found by straight differentiation. The equation for α is

dJ

dα
= h′(α)

(
γ

∫ α

a

(h(x) − h(α))dx − 1
)

= 0

or, noticing the cut point α is not a stationary point, h′(α) 6= 0∫ α

a

[h(x) − h(α)]dx =
1
γ

the equation for β is similar:∫ b

β

[h(x) − h(β)]dx =
1
γ

Notice that the extremal is broken; regular variational method based on the
Euler equation is not effective. These irregular problems will be discussed later
in Chapter ??.

Problems

Problem 3.3 Use the regularization (15) instead of (??) and find a family of
solutions in a regularized problem. Graph the results.

Problem 3.4 Let h(x) be

h1(x) = cos(ωx), x ∈ [−π, π]
h2(x) = exp(−ω|x|), x ∈ [−π, π]
h3(x) = sign (x), x ∈ [−π, π]

Find all three approximate . Discuss the difference. Graph the results.

Problem 3.5 Replace term |u− h| in (8) by a family of smoother functions (14)
or (15) and investigate stationarity conditions. Graph the results.

Problem 3.6 (Project) Consider the problem

min
u(x)

∫ b

a

(γ|u′| + |u − f |)dx

Investigate the properties of u. Use regularization by different families (13) (14)
(15)

Problem 3.7 (Project) Regularize the problem of minimal surface and find both
the catenoid and Goldschmidt solution by a regular variational method.
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4 Solutions with an unbounded derivative. Reg-
ularization

4.1 Lagrangians of linear growth

A minimizing sequence may tend to a discontinuous function if the Lagrangian
growth slowly with the increase of u′. Here we investigate discontinuous solu-
tions of Lagrangians of linear growth. Assume that the Lagrangian F satisfies
the limiting equality

lim
|u′|→∞

F (x, u, u′)
|u′| ≤ βu (17)

where β is a nonnegative constant.
Considering the scalar case (u is a scalar function), we assume that the min-

imizing sequence tends to a finite discontinuity (jump) and calculate the impact
of it for the objective functional. Let a miniming sequence uε of differentiable
functions tend to a discontinuous at the point x0 function, as follows

uε(x) = φ(x) + ψε(x)
ψε(x) ⇁ αH(x− x0), β 6= 0

where φ is a differentiable function with the bounded everywhere derivative,
and H is the Heaviside function.

Assume that functions ψε that approximate the jump at the point x0 are
piece-wise linear,

ψε(x) =




0 if x < x0 − ε
α
ε (x− x0 + ε) if x0 − ε ≤ x ≤ x0

α if x > x0.

The derivative (ψε)′ is zero outside of the interval [x0 − ε, x0] where it is equal
to a constant,

ψ′ =
{

0 if x /∈ [x0 − ε, x0]
α
ε if x ∈ [x0 − ε, x0]

The Lagrangian is computed as

F (x, u, u′) =
{
F (x, φ, φ′) if x /∈ [x0 − ε, x0]
F
(
x, φ+ ψε, φ′ + α

ε

)
= αβ

ε + o
(

1
ε

)
if x ∈ [x0 − ε, x0]

Here, we use the condition (17) of linear growth of F .
The variation of the objective functional is

∫ b

a

F (x, u, u′)dx ≤
∫ b

a

F (x, φ, φ′)dx+ αβ.

We observe that the contribution αβ due to the discontinuity of the minimizer
is finite when the magnitude |α| of the jump is finite. Therefore, discontinuous
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solutions are tolerated in the problems with Lagrangian of linear growth: They
do not lead to infinitely large values of the objective functionals. To the contrary,
the problems with Lagrangians of superlinear growth β = ∞ do not allow for
discontinuous solution because the penalty is infinitely large.

Remark 4.1 The problems of Geometric optics and minimal surface are or linear
growth because

lim
|u′|→∞

√
1 + u′2

u′
= 1.

but problems of Lagrange mechanics are of quadratic (superlinear) growth because
kinetic energy depends of the speed q̇ quadratically.

4.2 Examples of discontinuous solutions

Example 4.1 (Discontinuities in problems of geometrical optics) We have
already seen in Section ?? that the minimal surface problem

I0 = min
u(x)

I(u), I(u) =
∫ L

o

u
√

1 + (u′)2dx, u(−1) = 1, u(1) = 1, (18)

can lead to a discontinuous solution (Goldschmidt solution)

u = −H(x+ 1) +H(x− 1)

if L is larger than a threshold.
Particularly, the Goldschmidt solution corresponds to zero smooth component

u(x) = 0, x = (a, b) and two jumps M1 and M2 of the magnitudes u(a) and u(b),
respectively. The smooth component gives zero contribution, and the contributions
of the jumps are

I =
1
2
(
u2(a) + u2(b)

)
The next example (Gelfand & Fomin) shows that the solution may exhibit

discontinuity if the superlinear growth condition is violated even at a single
point.

Example 4.2 (Discontinuous extremal and viscosity-type regularization)
Consider the minimization problem

I0 = min
u(x)

I(u), I(u) =
∫ 1

−1

x2u′2dx, u(−1) = −1, u(1) = 1, (19)

We observe that I(u) ≥ 0 ∀u, and therefore I0 ≥ 0. The Lagrangian is convex
function of u′, and the third condition is satisfied. However, the second condition
is violated in x = 0:

lim
|u′|→∞

x2u′2

|u′|
∣∣∣∣
x=0

= lim
|u′|→∞

x2|u′|
∣∣∣∣
x=0

= 0
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The functional is of sublinear growth at only one point x = 0.
Let us show that the solution is discontinuous. Assume the contrary, that the

solution satisfies the Euler equation (x2u′)′ = 0 everywhere. The equation admits
the integral

∂L

∂u′
= 2x2u′ = C.

If C 6= 0, the value of I(u) is infinity, because then u′ = C
2x2 , the Lagrangian

becomes

x2u′2 =
C2

x2
if C 6= 0.

and the integral of Lagrangian diverges. A finite value of the objective corresponds
to C = 0 which implies that u′0(x) = 0 if x 6= 0. Accounting for the boundary
conditions, we find

u0(x) =
{−1 if x < 0

1 if x > 0

and u0(0) is not defined.
We arrived at the unexpected result that violates the assumptions used when

the Euler equation is derived: u0(x) is discontinuous at x = 0 and u′0 exists only in
the sense of distributions:

u0(x) = −1 + 2H(x), u′0(x) = 2δ(x)

This solution delivers absolute minimum (I0 = 0) to the functional, is not differen-
tiable and satisfies the Euler equation in the sense of distributions,

∫ 1

−1

d

dx

∂L

∂u′

∣∣∣∣
u=u0(x)

φ(x)dx = 0 ∀φ ∈ L∞[−1, 1]

Regularization A slight perturbation of the problem (regularization) yields to
the problem that has a classical solution and this solution is close to the discon-
tinuous solution of the original problem. This time, regularization is performed by
adding to the Lagrangian a stabilizer, a strictly convex function ερ(u′) of superlinear
growth.

Consider the perturbed problem for the Example 19:

Iε = min
u(x)

Iε(u), Iε(u) =
∫ 1

−1

(
x2u′2 + ε2u′2

)
dx, u(−1) = −1, u(1) = 1,

(20)
Here, the perturbation ε2u′ is added to the original Lagrangian ε2u′; the perturbed
Lagrangian is of superlinear growth everywhere.

The first integral of the Euler equation for the perturbed problem becomes

(x2 + ε2)u′ = C, or du = C
dx

x2 + ε2

14



Integrating and accounting for the boundary conditions, we obtain

uε(x) =
(

arctan
1
ε

)−1

arctan
x

ε
.

When ε → 0, the solution uε(x) converges to u0(x) although the convergence is
not uniform at x = 0.

Unbounded solutions in constrained problems The discontinuous so-
lution often occurs in the problem where the derivative is unbounded. The
problem can be regularized if satisfies additional inequalities c1 ≤ u′ ≤ c2 are
assumed In such problems, the stationary condition must be satisfied in the
points where derivative is not at the constrain u′ ∈ (c1, c2).

The next example shows, that the measure of such interval can be infinites-
imal.

Example 4.3 (Euler equation is meaningless) Consider the variational prob-
lem with an inequality constraint

max
u(x)

∫ π

0

u′ sin(x)dx, u(0) = 0, u(π) = 1, u′(x) ≥ 0 ∀x.

The minimizer should either corresponds to the limiting value u′ = 0 of the deriva-
tive or satisfy the stationary conditions, if u′ > 0. Let [αi, βi] be a sequence of
subintervals where u′ = 0. The stationary conditions must be satisfied in the com-
plementary set of intervals (βi, αi+1]) located between the intervals of constancy.
The derivative cannot be zero everywhere, because this would correspond to a con-
stant solution u(x) and would violate the boundary conditions.

However, the minimizer cannot correspond to the solution of Euler equation at
any interval. Indeed, the Lagrangian L depends only on x and u′. The first integral
∂L
∂u′ = C of the Euler equation yields to an absurd result

sin(x) = constant ∀x ∈ [βi, αi+1]

The Euler equation does not produce the minimizer. Something is wrong!
The objective can be immediately bounded by the inequality∫ π

0

f(x)g(x)dx ≤
(

max
x∈[0,π]

g(x)
)∫ π

0

|f(x)|dx.

that is valid for all functions f and g if the involved integrals exist. We set
g(x) = sin(x) and f(x) = |f(x)| = u′ (because u′ is nonnegative), account for the
constraints ∫ π

0

|f(x)|dx = u(π) − u(0) = 1 and max
x∈[0,π]

sin(x) = 1,

and obtain the upper bound

I(u) =
∫ π

0

u′ sin(x)dx ≤ 1 ∀u.
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This bound corresponds to the minimizing sequence un that tends to a Heaviside
function un(x) → H(x − π/2). The derivative of such sequence tends to the
δ-function, u′(x) = δ(x − π/2). Indeed, immediately check that the bound is
realizable, substituting the limit of un into the problem∫ π

0

δ
(
x− π

2

)
sin(x)dx = sin

(π
2

)
= 1.

The reason for the absence of a stationary solution is the openness of the set
of differentiable function. This problem also can be regularized. Here, we show
another way to regularization, by imposing an additional pointwise inequality
u′(x) ≤ 1

γ ∀x (Lipschitz constraint). Because the intermediate values of u′ are
never optimal, optimal u′ alternates the limiting values:

u′γ(x) =
{

0 if x /∈ [π
2 − γ, π

2 + γ
]
,

1
2γ if x ∈ [π

2 − γ, π
2 + γ

]
,

The objective functional is equal to

I(uγ) =
1
2γ

∫ π
2 +γ

π
2 −γ

sin(x)dx =
1
γ

sin (γ)

When γ tends to zero, IM goas to its limit

lim
γ→0

Iγ = 1,

the length γ of the interval where u′ = 1
2γ goes to zero so that u′γ(t) weakly

converges to the δ-function for u′, u′γ(t) ⇁ δ
(
x− π

2

)
.

This example clearly demonstrates the source of irregularity: The absence
of the upper bound for the derivative u′. The constrained variational problems
are studied in the control theory; they are are discussed later in Section ??.

4.3 Regularization and penalization

Regularization as smooth approximation The smoothing out feature of
regularization is easy demonstrated on the following example of a quadratic
approximation of a function by a smoother one.

Approximate a function f(x) where x ∈ R, by the function u(x), adding a
quadratic stabilizer; this problem takes the form

min
u

∫ ∞

−∞
[ε2(u′)2 + (u− f)2]dx

The Euler equation
ε2u′′ − u = −f (21)

can be easily solved using the Green function

G(x, y) =
1
2ε

exp
(
−|x− y|

ε

)
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of the operator in the left-hand side of (21). We have

u(x) =
1
2ε

∫ ∞

−∞
exp

(
−|x− y|

ε

)
f(y)dy

that is the expression of the averaged f . The smaller is ε the closer is the average
to f .

Quadratic stabilizers Besides the stabilizer εu′2 , other stabilizers can be
considered: The added term εu2 penalizes for large values of the minimizer,
ε(u′′)2 penalizes for the curvature of the minimizer and is insensitive to linearly
growing solutions. The stabilizers can be inhomogeneous like ε(u − utarget)2;
they force the solution stay close to a target value. The choice of a specific
stabilizer depends on the physical arguments (see Tikhonov).

For example, solve the problem with the Lagrangian

F = ε4(u′′)2 + (u− f(x))2

Show that u = f(x) if f(x) is any polynomial of the order not higher than three.
Find an integral representation for u(f) if the function f(x) is defined at the
interval |x| ≤ 1 and at the axis x ∈ R.

4.4 Complement: Regularization of a finite-dimensional
linear problem

As the most of variational methods, the regularization has a finite-dimensional
analog. It is applicable to the minimization problem of a convex but not strongly
convex function which may have infinitely many solutions. The idea of regular-
ization is to slightly perturb the function by small but a strictly convex term;
the perturbed problem has a unique solution to matter how small the pertur-
bation is. The numerical advantage of the regularization is the convergence of
minimizing sequences.

Let us illustrate ideas of regularization by studying a finite dimensional
problem. Consider a linear system

Ax = b (22)

where A is a square n× b matrix and b is a known n-vector.
We know from linear algebra that the Fredholm Alternative holds:

• If detA 6= 0, the problem has a unique solution:

x = A−1b if detA 6= 0 (23)

• If detA = 0 and Ab 6= 0, the problem has no solutions.

• If detA = 0 and Ab = 0, the problem has infinitely many solutions.
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In practice, we also deal with an additional difficulty: The determinant detA
may be a “very small” number and one cannot be sure whether its value is a
result of rounding of digits or it has a “physical meaning.” In any case, the
errors of using the formula (23) can be arbitrary large and the norm of the
solution is not bounded.

To address this difficulties, it is helpful to restate linear problem (22) as an
extremal problem:

min
x∈Rn

(Ax− b)T (Ax− b) (24)

This problem does have at least one solution, no matter what the matrix A
is. This solution coincides with the solution of the original problem (22) when
this problem has a unique solution; in this case the cost of the minimization
problem (24) is zero. Otherwise, the minimization problem provides ”the best
approximation” of the non-existing solution.

If the problem (22) has infinitely many solutions, so does problem (24).
Corresponding minimizing sequences {xs} can be unbounded, ‖xs‖ → ∞ when
s→ ∞.

In this case, we may select a solution with minimal norm. We use the
regularization, passing to the perturbed problem

min
x∈Rn

(Ax− b)T (Ax− b) + εxTx

The solution of the last problem exists and is unique. Indeed, we have by
differentiation

(ATA+ εI)x−AT b = 0

and
x = (ATA+ εI)−1AT b

We mention that

1. The inverse exists since the symmetric matrix ATA is nonnegative defined,
and ε is positive. The eigenvalues of the inverse matrix (ATA+ εI)−1 are
not larger than ε−1

2. Suppose that we are dealing with a well-posed problem (22), that is the
matrix A is not degenerate. When ε → 0, the solution becomes the solu-
tion (23) of the unperturbed problem, x→ A−1b.

3. If the problem (22) is ill-posed, the norm of the solution of the perturbed
problem is still bounded:

‖x‖ ≤ 1
ε
‖b‖

Remark 4.2 Instead of the regularizing term εx2, we may use any positively define
quadratic ε(xTPx + pTx) where matrix P is positively defined, P > 0, or other
strongly convex function of x.
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