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Since, however, the rules 〈for isoperimetric curves or, in modern terms,
extremal problems〉 were not sufficiently general, the famous Euler under-
took the task of reducing all such investigations to a general method which
he gave in the work ”Essay on a new method of determining the maxima
and minima of indefinite integral formulas”; an original work in which
the profound science of the calculus shines through. Even so, while the
method is ingenious and rich, one must admit that it is not as simple as
one might hope in a work of pure analysis.

In ”Essay on a new method of determining the maxima and minima of
indefinite integral formulas”, by Lagrange, 1760

1 Stationarity of an integral functional

The technique was developed by Euler, who also introduced the name “Calculus
of variations” in 1766. The method is based on an analysis of infinitesimal
variations of a minimizing curve.

The main scheme of the variational method is as follows: Assume that the
optimal curve u(x) exists among smooth (twice-differentiable curves). Compare
the optimal curve with close-by trajectories u(x) + δu(x), where δu(x) is small
in some sense. Using the smallness of δu, we simplify the comparison, deriving
necessary conditions for the optimal trajectory u(x) Variational methods yield to
only necessary conditions of optimality because it is assumed that the compared
trajectories are close to each other; on the other hand, they are applicable to a
great variety of extremal problems called variational problems.

1.1 Euler equation (Optimality conditions)

Consider the problem called the simplest problem of the calculus of variations

min
u
I(u), I(u) =

∫ b

a

F (x, u, u′)dx, u(a) = ua, u(b) = ub, (1)

Here integrant F called the Lagrangian, is twice a differentiable function of
its three arguments, I(u) is called the cost functional. It is not known a pri-
ori whether the minimizer u0(x) is smooth, but let us assume that it is twice
differentiable function of x.

For example, consider the area of the surface of revolution. According to
the calculus, the area J of the surface is

A(r) = π

∫ b

a

r(x)
√

1 + r′(x)2 dx,

where r(x) is the variable distance from the axes OX of rotation. The problem
of minimal area of such surface

I = min
r(x)

A(u), r(a) = Ra, r(b) = Rb
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is a variational problem. To avoid trivial solution, values r(a) and r(b) are fixed.
To derive necessary condition of optimality of a minimizer u0 we use the ideas

of calculus, computing an analog of the derivative of I with respect to u (called
the functional derivative) and setting it to zero. We suppose that function
u0 = u0(x) is a minimizer and replace u0 with a test function u0 + δu, assuming
that the norm‖δu‖ of the variation δu is infinitesimal. The test function u0 +δu
satisfies the same boundary conditions as u0. If indeed u0 is a minimizer, the
increment of the cost δI(u0) = I(u0 + δu)− I(u0) is nonnegative:

δI(u0) =

∫ 1

0

(F (x, u0 + δu, (u0 + δu)′)− F (x, u0, u
′
0))dx ≥ 0. (2)

If δu is not specified, the equation (2) is not too informative. However,
a particular form of the variation δu simplifies (2) and allows for finding an
equation for the minimizer. Calculus of variations suggests a set of tests that
differ by various assumed form of variations δu.

Euler–Lagrange Equations The simplest variational condition (the Euler–
Lagrange equation) is derived assuming that the variation δu is infinitesimally
small and localized:

δu =

{
ρ(x) if x ∈ [x0, x0 + ε],
0 if x is outside of [x0, x0 + ε].

(3)

Here ρ(x) is a continuous function that vanishes at points x0 and x0 + ε and is
constrained as follows:

|ρ(x)| < ε, |ρ′(x)| < ε ∀x. (4)

The integrand at the perturbed trajectory can be expanded into Taylor se-
ries,

F (x, u0 + δu, (u0 + δu)′) = F (x, u0, u
′
0) +

∂F (x, u0, u
′
0)

∂u
δu

+
∂F (x, u0, u

′
0)

∂u′
δu′ + o(δu, δu′)

Here, δu′ is derivative of the variation δu, δu′ = (δu)′, o(δu, δu′) denotes higher
order terms which norms are smaller than ‖δu‖ and ‖δu′‖ when ε→ 0. Substi-
tuting this expression into (2) and collecting linear (with respect to ε) terms,
we rewrite (2) as

δI(u0) =

∫ b

a

(
∂F

∂u
(δu) +

∂F

∂u′
(δu)′

)
dx+ o(ε) ≥ 0. (5)

where The F is calculated at the examined trajectory u0. To simplify notations,
we omit index (0) below.
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The variations δu and (δu)′ are mutually dependent and (δu)′ can be ex-
pressed in terms of δu. Integration by parts of the underlined term in (5) gives∫ b

a

∂F

∂u′
(δu)′dx =

∫ b

a

(
− d

dx

∂F

∂u′

)
δu dx+

∂F

∂u′
δu

∣∣∣∣x=b
x=a

and we obtain

0 ≤ δI(u0) =

∫ b

a

SF (x, u, u′)δu dx+
∂F

∂u′
δu

∣∣∣∣x=b
x=a

+ o(ε), (6)

where SF denotes the functional derivative,

SF (x, u, u′) = − d

dx

∂F

∂u′
+
∂F

∂u
. (7)

The nonintegral term in the right-hand side of (6) is zero, because the bound-
ary values of u are prescribed as u(a) = ua and u(b) = ub; therefore their
variations δu|x=a and δu|x=b equal zero,

δu|x=a = 0, δu|x=b = 0

Due to the arbitrariness of δu, we arrive at the following

Theorem 1.1 (Stationarity condition) Any differentiable and bounded min-
imizer u0 of the variational problem (1) is a solution to the boundary value problem

SF (x, u, u′) =
d

dx

∂F

∂u′
− ∂F

∂u
= 0 ∀x ∈ (a, b); u(a) = ua, u(b) = ub, (8)

called the Euler–Lagrange equation.

The Euler–Lagrange equation is also called the stationary condition of optimality
because it expresses stationarity of the variation.

Remark 1.1 The stationarity test alone does not allow to conclude whether u is
a true minimizer or even to conclude that a solution to (8) exists. For example,
the function u that maximizes I(u) satisfies the same Euler–Lagrange equation.
The tests that distinguish minimal trajectory from other stationary trajectories are
discussed in Chapter ??.

In this derivation, it is assumed that the extremal u(t) is a twice differentiable
function of x. Using the chain rule, the left-hand side of equation (8) can be
rewritten as

SF (x, u, u′) =
∂2F

∂u′2
u′′ +

∂2F

∂u′∂u
u′ +

∂2F

∂x∂u′
− ∂F

∂u
(9)
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Example 1.1 Compute the Euler equation for the problem

I = min
u(x)

∫ 1

0

F (x, u, u′)dx u(0) = 1, u(1) = a, F =
1

2
(u′)2 +

1

2
u2

We compute ∂F
∂u′ = u′, ∂F

∂u = u and the Euler equation becomes

u′′ − u = 0 in (0, 1), u(0) = 1, u(1) = a.

The minimizer u0(x) is

u0(x) = cosh(x) +
a− cosh(1)

sinh(1)
sinh(x).

The definition of the weak solution naturally arises from the variational
formulation that does not check the behavior of the minimizer in each point but
in each infinitesimal interval. The minimizer can change its values at several
points, or even at a set of zero measure without effecting the objective functional.
In ambiguous cases, one should specify in what sense (Riemann, Lebesgue) the
integral is defined and change the definition of variation accordingly.

1.2 First integrals: Three special cases

In several cases, the Euler equation (8) can be integrated at least once. These are
the cases when Lagrangian F (x, u, u′) does not depend on one of the arguments.
Below, we investigate these cases.

Lagrangian is independent of u′ Assume that F = F (x, u), and the mini-
mization problem is

I(u) = min
u(x)

∫ 1

0

F (x, u)dx (10)

In this case, the variation does not involve integration by parts, and the mini-
mizer does not need to be continuous. Euler equation (8) becomes an algebraic
relation for u

∂F

∂u
= 0 (11)

Curve u(x) is determined in each point independently of neighboring points.
The boundary conditions in (8) are satisfied by jumps of the extremal u(x) in
the end points; these conditions do not affect the objective functional at all.

Example 1.2 Consider the problem

I(u) = min
u(x)

∫ 1

0

(u− sinx)2dx, u(0) = 1; u(1) = 0.

The minimal value J(u0) = 0 corresponds to the discontinuous minimizer

u0(x) =

 sinx if 0 ≤ x ≤ 1
1 if x = 0
0 if x = 1
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Formally, the discontinuous minimizer contradicts the assumption posed when
the Euler equation was derived. To be consistent, we need to repeat the deriva-
tion of the necessary condition for the problem (10) without any assumption on
the continuity of the minimizer. This derivation is quite obvious.

Lagrangian is independent of u If Lagrangian does not depend on u, F =
F (x, u′), Euler equation (8) can be integrated once:

∂F

∂u′
= constant (12)

The first order differential equation (12) for u is the first integral of the problem;
it defines a quantity that stays constant everywhere along the optimal trajectory.
To find the optimal trajectory, it remains to integrate the first order equation
(12) and determine the constants of integration from the boundary conditions.

Example 1.3 Consider the problem

I(u) = min
u(x)

∫ 1

0

(u′ − cosx)2dx, u(0) = 1; u(1) = 0.

The first integral is
∂F

∂u′
= u′(x)− cosx = C

Integrating, we find the minimizer,

u(x) = sinx+ Cx+ C1.

The constants C and C1 are found from and the boundary conditions:

C1 = 1, C = −1− sin 1,

minimizer u0 and the cost of the problem become, respectively

u0(x) = sinx− (sin 1 + 1)x+ 1 I(u0) = (sin 1 + 1)2.

Notice that the Lagrangian in the example (1.2) is the square of difference
between the minimizer u and function sinx, and the Lagrangian in the example
(1.3) is the square of difference of their derivatives. In the problem (1.2), the
minimizer coincides with sinx, and jumps to satisfy the prescribed boundary
values. The minimizer u in the example (1.3) cannot jump. Consider a contin-
uous approximation of a derivative u′ of a discontinuous function; it increases
in the proximity of the point of discontinuity and is unbounded, such a growth
would increase the objective functional, and therefore it would be nonoptimal.
We deal with such problems below in Chapter ??.

6



Lagrangian is independent of x If F = F (u, u′), equation (8) has the first
integral:

W (u, u′) = constant (13)

where

W (u, u′) = u′
∂F

∂u′
− F

Indeed, compute the x-derivative of W (u, u′) which must be equal to zero
by virtue of (13):

d

dx
W (u, u′) =[

u′′
∂F

∂u′
+ u′

(
∂2F

∂u′∂u
u′ +

∂2F

∂u′2
u′′
)]
− ∂F

∂u
u′ − ∂F

∂u′
u′′ = 0

where the expression in square brackets is the derivative of the first term of
W (u, u′). Cancelling the equal terms, we bring this equation to the form

u′
(
∂2F

∂u′2
u′′ +

∂2F

∂u′∂u
u′ − ∂F

∂u

)
= 0 (14)

The expression in parenthesis coincide with the left-hand-side term S(x, u, u′)
of the Euler equation in the form (9), simplified for the considered case (F is
independent of x, F = F (u, u′)). W is constant at any solution u(x) of Euler
equation. Instead of solving the Euler equation, we may solve the first-order
equation W = 0 obtaining the same solution.

Example 1.4 Consider the Lagrangian

F =
1

2

[
(u′)2 − ω2u2

]
The Euler equation is

u′′ + ω2u = 0

The first integral is

W =
1

2

(
ω2u2 + (u′)2

)
= C2 = constant

Let us check the constancy of the first integral. The solution u of the Euler equation
is equal

u = A cos(ωx) +B sin(ωx)

where A and B are constants. Substituting the solution into the expression for the
first integral, we compute

W = (u′)2 + ω2u2 = [−Aω sin(cx) +Bω cos(ωx)]
2

+ω2 [A cos(ωx) +B sin(ωx)]
2

= ω2(A2 +B2)

We have shown that W is constant at the optimal trajectory. In mechanical appli-
cation, W is the total energy of the oscillator.
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1.3 Variational problem as a limit of a finite-dimensional
problem

Here, we derive Euler equation for a finite-dimensional problem that approxi-
mate the simplest variational problem

min
u(x)

I(u), I(u) =

∫ b

a

F (x, u, u′)dx

Consider a class of piece-wise constant discontinuous functions UN :

ū(x) ∈ UN , if ū(x) = ui ∀x ∈
[
a+

i

N
(b− a)

]
A function ū in UN is defined by an N -dimensional vector {u1, . . . uN}.

Rewriting the variational problem for this class of minimizers, we replace
the derivative u′(x) with a finite difference Diff (ui)

Diff (ui) =
1

∆
(ui − ui−1), ∆ =

b− a
N

; (15)

when N → ∞, this operator tends to the derivative. The variational problem
is replaced by finite-dimensional optimization problem:

min
u1,...,uN−1

IN IN = ∆

N∑
i=1

Fi(ui, zi), zi = Diff (zi) =
1

∆
(zi − zi−1) (16)

Compute the stationary conditions for the minimum of IN (u)

∂IN
∂ui

= 0, i = 1. . . . , N.

Only two terms, Fi and Fi+1, in the above sum depend on ui: the first depends
on ui directly and also through the operator zi = Diff (ui), and the second– only
through zi+1 = Diff (ui+1):

dFi
dui

=
∂Fi
∂ui

+
∂Fi
∂zi

1

∆
,

dFi+1

dui
= −∂Fi+1

∂zi+1

1

∆
.

dFk
dui

= 0, k 6= i, k 6= i+ 1

Collecting the terms, we write the stationary condition with respect to ui :

∂IN
∂ui

=
∂Fi
∂ui

+
1

∆

(
∂Fi
∂z
− ∂Fi+1

∂z

)
= 0

or, recalling the definition (15) of Diff -operator, the form

∂IN
∂ui

=
∂Fi
∂ui
−Diff

(
∂Fi+1

∂z

)
= 0.
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The initial and the final point u0 and uN enter the difference scheme only
once, therefore the optimality conditions are different. They are, respectively,

∂FN+1

∂Diff (uN+1)
= 0;

∂Fo
∂Diff (u0)

= 0.

Formally passing to the limit N → ∞, Diff → d
dx , z → u′ replacing the

index (i) with a continuous variable x, vector of values {uk} of the piece-wise
constant function with the continuous function u(x), difference operator Diff
with the derivative d

dx ; then

∆

N∑
i=1

Fi(ui,Diffui)→
∫ b

a

F (x, u, u′)dx.

and
∂Fi
∂ui
−Diff

(
∂Fi+1

∂z

)
→ ∂F

∂u
− d

d x

∂F

∂u′

The conditions for the end points become the natural variational conditions:

∂F

∂u′(0)
= 0,

∂F

∂u′(T )
= 0,

Remark 1.2 So far, we followed the formal scheme of necessary conditions, thereby
tacitly assuming that all derivatives of the Lagrangian exist, the increment of the
functional is correctly represented by the first term of its power expansion, and the
limit of the sequence of finite-dimensional problems exist and does not depend on
the partition {x1, . . . xN} if only |xk − xk−1| → 0 for all k. We also indirectly
assume that the Euler equation has at least one solution consistent with boundary
conditions.

If all the made assumptions are correct, we obtain a curve that might be a
minimizer because it cannot be disproved by the stationary test. In other terms, we
find that is there is no other close-by classical curve that correspond to a smaller
value of the functional. This statement about the optimality seems to be rather weak
but this is exactly what the calculus of variation can give us. On the other hand, the
variational conditions are universal and, being appropriately used and supplemented
by other conditions, lead to a very detailed description of the extremal as we show
later in the course.

Remark 1.3 In the above procedure, we assume that the limits of the components
of the vector {uk} represent values of a smooth function in the close-by points
x1, . . . , xN . At the other hand, uk are solutions of optimization problems with the
coefficients that slowly vary with the number k. We need to answer the question
whether the solution of a minimization problem tends to is a differentiable function
of x; that is whether the limit

lim
k→∞

uk − uk−1
xk − xk−1

exists and this is not always the case. We address this question later in Chapter ??
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2 Stationarity of boundary terms

2.1 Variation of boundary conditions

Variational conditions and natural conditions The value of minimizer
may not be specified on one or both ends of the interval [a, b]. In this case, these
values are calculated by the minimization of the goal functional together with
the minimizer. Consider a variational problem where the boundary value at the
right end b of the interval is not defined and the functional directly depends on
this value,

min
u(x):u(a)=ua

I(u), I(u) =

∫ b

a

F (x, u, u′)dx+ f(u(b)) (17)

The Euler equation for the problem remain the same, S(x, u, u′) = 0, but this
time it must be supplemented by a variational boundary condition that comes
from the requirement of the stationarity of the minimizer with respect to vari-
ation of the boundary term. This term is(

∂F

∂u′
+
∂f

∂u

)∣∣∣∣
x=b

δu(b)

The first term comes from the integration by part in the derivation of Euler
equation, see (6), and the second is the variation of the last term in the objec-
tive functional (17). Because the sign of the variation δu(b) is arbitrary, the
stationarity condition has the form

∂F

∂u′

∣∣∣∣
x=b

+
∂f

∂u

∣∣∣∣
x=b

= 0 (18)

This equality provides the missing boundary condition at the endpoint x = b
for the second order Euler equation. Similar condition can be derived for the
point x = a if the value at this point is not prescribed.

Example 2.1 Minimize the functional

I(u) = min
u

∫ 1

0

1

2
(u′)2dx+Au(1), u(0) = 0

Here, we want to minimize the endpoint value and we do not want the trajectory be
too steep. The Euler equation u′′ = 0 must be integrated with boundary conditions
u(0) = 0 and (see (18)) u′(1) + A = 0 The extremal is a straight line, u = −Ax.
The cost of the problem is I = − 1

2A
2.

If f = 0, the condition (18) becomes

∂F

∂u′

∣∣∣∣
x=b

= 0 (19)

and it is called the natural boundary condition.

Example 2.2 Consider the problem F = a(x)(u′)2 +φ(x, u) where a(x) 6= 0 The
natural boundary condition is u′|x=b = 0.
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2.2 Broken extremal and the Weierstrass-Erdman condi-
tion

The classical derivation of the Euler equation requires the existence of all second
partials of F , and the solution u of the second-order differential equation is
required to be twice-differentiable. In some problems, F is only piece-wise twice
differentiable; in this case, the extremal consists of several curves – solutions
of the Euler equation that are computed at the intervals of smoothness. We
consider the question: How to join these pieces together?

The first continuity condition is continuity of the (differentiable) minimizer
u(x)

[u]
+
− = 0 along the optimal trajectory u(x) (20)

Here [z]
+
− = z+ − z− denotes the jump of the variable z.

The extremal u is differentiable, the first derivative u′ exists at all points of
the trajectory. This derivative does not need to be continuous. Instead, Euler
equation requests the differentiability of ∂F

∂u′ to ensure the existence of the term
d
dx

∂F
∂u′ in the Euler equation.
Integrating the stationarity condition (8), we obtain stationarity in the in-

tegral form∫ x

a

SF (x, u, u′)dx =

∫ x

a

(
d

dx

∂F (x, u, u′)

∂u′
− ∂F (x, u, u′)

∂u

)
dx = 0

or
∂F (x, u, u′)

∂u′
=

∫ x

x0

∂F (x, u, u′)

∂u
dx+

∂F (x, u, u′)

∂u′

∣∣∣∣
x=a

(21)

If ∂F
∂u is bounded at the optimal trajectory, the right-hand side is a continuous

function of x, and so is the left-hand side. This requirement of continuity of
an optimal trajectory is called the Weierstrass-Erdman condition on broken
extremal.

Theorem 2.1 At any point of the optimal trajectory, the Weierstrass-Erdman
condition must be satisfied:[

∂F

∂u′

]+
−

= 0 along the optimal trajectory u(x). (22)

Example 2.3 (Broken extremal) Consider the Lagrangian

F =
1

2
c(x)(u′)2 +

1

2
u2, c(x) =

{
c1 if x ∈ [a, x∗)
c2 if x ∈ (x∗, b]

,

where x∗ is point in (a, b). The Euler equation is held everywhere in (a, b) except
of the point x∗,

d

dx
[c1u

′]− u = 0 if x ∈ [a, x∗)

d

dx
[c2u

′]− u = 0 if x ∈ (x∗, b],

11



At x = x∗, the continuity conditions hold,

u(x∗ − 0) = u(x∗ + 0), c1 u
′(x∗ − 0) = c2 u

′(x∗ + 0).

The derivative u′(x) itself is discontinuous; its jump is determined by the jump in
the coefficients:

u′(x∗ + 0)

u′(x∗ − 0)
=
c1
c2

These conditions together with the Euler equation and boundary conditions deter-
mine the optimal trajectory.

3 Functional dependent on higher derivatives

Consider a more general type variational problem with the Lagrangian that
depends on the minimizer and its first and second derivative,

J =

∫ b

a

F (x, u, u′, u′′)dx

The Euler equation is derived similarly to the simplest case: The variation of
the goal functional is

δJ =

∫ b

a

(
∂F

∂u
δu+

∂F

∂u′
δu′ +

∂F

∂u′′
δu′′
)
dx

Integrating by parts the second term and twice the third term, we obtain

δJ =

∫ b

a

(
∂F

∂u
− d

dx

∂F

∂u′
+

d2

dx2
∂F

∂u′′

)
δu dx

+

[
∂F

∂u′
δu+

∂F

∂u′′
δu′ − d

dx

∂F

∂u′′
δu

]x=b
x=a

(23)

The stationarity condition becomes the fourth-order differential equation

d2

dx2
∂F

∂u′′
− d

dx

∂F

∂u′
+
∂F

∂u
= 0 (24)

supplemented by two natural boundary conditions on each end,

δu′
∂F

∂u′′
= 0, δu

[
∂F

∂u′
− d

dx

∂F

∂u′′

]
= 0 at x = a and x = b (25)

or by the correspondent main conditions posed on the minimizer u and its
derivative u′ at the end points.

Example 3.1 The equilibrium of an elastic bending beam correspond to the so-
lution of the variational problem

min
w(x)

∫ L

0

(
1

2
(E(x)w′′)2 − q(x)w)dx (26)
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where w(x) is the deflection of the point x of the beam, E(x) is the elastic stiffness
of the material that can vary with x, q(x) is the load that bends the beam. Any of
the following kinematic boundary conditions can be considered at each end of the
beam.
(1) A clamped end: w(a) = 0, w′(a) = 0
(2) a simply supported end w(a) = 0.
(3) a free end (no kinematic conditions).

Let us find equation for equilibrium and the missing boundary conditions in the
second and third case. The Euler equation (24) becomes

(Ew′′)′′ − q = 0 ∈ (a, b)

The equations (25) become

δu′(Eu′′) = 0, δu ((Ew′′)′) = 0

In the case (2) (simply supported end), the complementary variational boundary
condition is Eu′′ = 0, it expresses vanishing of the bending momentum at the
simply supported end. In the case (3), the variational conditions are Eu′′ = 0 and
(Ew′′)′ = 0; the last expresses vanishing of the bending force at the free end (the
bending momentum vanishes here as well).

Generalization The Lagrangian

F
(
x, u, u′, . . . , u(n)

)
dependent on first k derivatives of udependent on higher derivatives of u is con-
sidered similarly. The stationary condition is the 2k-order differential equation

∂F

∂u
− d

dx

∂F

∂u′
+ . . .+ (−1)k

dk

dxk
∂F

∂u(k)
= 0

supplemented at each end x = a and x = b of the trajectory by k boundary
conditions [

∂F

∂u(k)

]
δu(k−1)|x=a,b = 0[

∂F

∂u(k−1)
− d

dx

∂F

∂u(k)

]
δu(k−2)|x=a,b = 0

. . .[
∂F

∂u′
− d

dx

∂F

∂u′′
+ . . .+ (−1)k

d(k−1)

dx(k−1)
∂F

∂u(k)

]
δu|x=a,b = 0

If u is a vector minimizer, u can be replaced by a vector but the structure of
the necessary conditions stay the same.
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4 Non-fixed interval

4.1 Transversality condition

Free boundary Consider now the case when the interval [a, b] is not fixed,
but the end point is to be chosen so that it minimizes the functional. Let us
compute the difference between the two functionals over two different intervals

δI =

∫ b+δx

a

F (x, u+ δu, u′ + δu′)dx−
∫ b

a

F (x, u, u′)dx

=

∫ b

a

(F (x, u+ δu, u′ + δu′)− F (x, u, u′)) dx+

∫ b+δx

b

F (x, u+ δu, u′ + δu′)dx

The second integral is estimated as∫ b+δx

b

F (x, u+ δu, u′ + δu′)dx = F (x, u, u′)|x=b δx+ o(‖δu‖, |δx|)

and the first integral is computed as before with integration by parts:∫ b

a

SF (x, u, u′)δu dx+
∂F

∂u′

∣∣∣∣
x=b

δu(b) = 0

1. Suppose that no boundary conditions are imposed at the minimizer at the
point x = b. Because of arbitrariness of δx and δu, we arrive at the conditions:

SF (x, u, u′) = 0 x ∈ (a, b),
∂F

∂u′

∣∣∣∣
x=b

= 0,

and
F (x, u, u′)|x=b = 0. (27)

Euler equation for the extremal satisfies an extra boundary condition (27), but
has also an additional degree of freedom: unknown coordinate b.

Example 4.1 Consider the problem

min
u(x),s

∫ s

0

(
1

2
u′2 − u+ x

)
dx u(0) = 0.

The Euler equation u′′ + 1 = 0 and the condition at u(0) = 0 corresponds to the
extremal

u = −1

2
x2 +Ax, u′ = −x+A

where A is a parameter. The condition ∂F
∂u′ = u′ = 0 at the unknown right end

x = s gives s = A. The transversality condition F = 0 or

(−u+ x)|x=A=s =
1

2
s2 − s2 + s = s

(
1− 1

2
s

)
= 0

We find s = 2, u = − 1
2x

2 + 2x.

14



2. Next, consider the problem in which the boundary data at b is prescribed,
u = β, but the value of b is not known. In the perturbed trajectory, the boundary
condition is u(b + δx) = β. The value of u(b + δx) is an extrapolation of u(x)
as follows

u(b+ δx) = u(b) + u′(b)δx+ o(‖δu‖, |δx|)
Therefore, the value (u+ δu)x=b depends on δx, u(b) = β − u′(b)δx or δu(b) =
−u′(b)δx. Combining the depending on δx terms, we obtain the condition(

F − ∂F

∂u′
u′(b)

)∣∣∣∣
x=b

δx

Because δx is arbitrary, the boundary conditions are: u = β and(
F (x, u, u′)− u′ ∂F

∂u′

)∣∣∣∣
x=b

= 0. (28)

Notice that the condition (28) at the unknown end is identical to the first
integral (13) of the problem in the case when F (u, u′) is independent of x. This
integral is constant along the trajectory. therefore condition (28) cannot be
satisfied at an isolated point.

3. Finally, consider the problem when the rajectory ends at a curve. If
the boundary value depends on b, u(b) = φ(b), then δu = φ′δx − u′δx. The
stationarity conditions become

u(b) = φ(b),

(
F − (u′ − φ′)∂F

∂u′

)∣∣∣∣
x=b

= 0. (29)

The next example deals with a constraint at the unknown length of the
interval and the boundary data.

Example 4.2 Find the shortest path between the origin and a curve φ(x).
The path length is given by

I = min
y(x),s

∫ s

0

√
1 + y′2dx, u(0) = 0

At the end point x the path meets the curve, therefore y(s) = φ(s) or

δy = φ′(s)δs (30)

The Euler equation
∂F

∂y′
=

y′√
1 + y′2

= C

shows that y′ = constant, therefore the path is a straight line, y = Ax as expected.
At the point s, the variation is(

u′
∂F

∂y′
− F

)
δx+ y′

∂F

∂y′
δy =

1√
1 + y′2

δx+
y′√

1 + y′2
δu

The stationarity gives the relation. −δx + y′δu = 0. Comparing it with the con-
straint (30), we conclude that y′(s)φ′(s) = −1, or that the shortest path is a line
orthogonal to the curve φ(x), as it is expected.
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4.2 Extremal broken at an unknown point

Combining the techniques, we may address the problem of en extremal bro-
ken in an unknown point. The position of this point is determined from the
minimization requirement. Assume that Lagrangian has the form

F (x, u, u′) =

{
F−(x, u, u′) if x ∈ (a, ξ)
F+(x, u, u′) if x ∈ (ξ, b)

where ξ is an unknown point in the interval (a, b) of the integration. The Euler
equation is

SF (u) =

{
SF−(u) if x ∈ (a, ξ)
SF+(u) if x ∈ (ξ, b)

The stationarity conditions at the unknown point ξ consist of stationarity of
the trajectory

∂F+

∂u′
=
∂F0

∂u′
(31)

and stationarity of the position of the transit point

F+(u)− u′+
∂F+

∂u′
= F−(u)− u′−

∂F−
∂u′

. (32)

They are derived by the same procedure as the conditions at the end point. The
variation δx of the transit point δx = δx+ = −δx− increases the first part of
the trajectory and decreases the second part, or vise versa, which explains the
structure of the stationarity conditions.

In particular, if the Lagrangian is independent of x, the condition (32) ex-
presses the constancy of the first integral (13) at the point ξ.

Example 4.3 Consider the problem with Lagrangian

F (x, u, u′) =

{
a+u

′2 + b+u
2 if x ∈ (a, ξ)

a−u
′2 if x ∈ (ξ, b)

and boundary conditions
u(a) = 0, u(b) = 1

The Euler equation is

SF (u) =

{
a+u

′′ − b+u = 0 if x ∈ (a, ξ)
a−u

′′ = 0 if x ∈ (ξ, b)

The solution to this equation that satisfies the boundary conditions is

u+(x) = C1 sinh
(√

b+
a+

(x− a)
)

if x ∈ (a, ξ)

u−(x) = C2(x− b) + 1 if x ∈ (ξ, b)
;

it depends on three constants ξ, C1, and C2 (Notice that the coefficient a− does not
enter the Euler equations). These constants are determined from three conditions
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at the unknown point ξ which express
(1) continuity of the extremal

u+(ξ) = u−(ξ),

(2) Weierstrass-Erdman condition

a+u
′
+(ξ) = a−u

′
−(ξ),

(3) transversality condition

−a+(u′+(ξ))2 + b+u(ξ)2 = −a−(u′−(ξ))2.

The transversality condition states the equality of two first integral. It is simplified
to

C2
1b+ = C2

2a−

From the Weierstrass-Erdman condition, we find

C1

√
a+
b+

cosh q = C2, where q =

√
b+
a+

(ξ − a)

The first condition and the definition of q allows for determination of ξ:

cosh q =
√
a+a−, ⇒ ξ = a+

a+
b+

cosh−1
√
a+a−

Finally, we define constants C1 and C2 from the continuity

C1 sinh q = 1 + C2(ξ − b)

and transversality conditions:

C1 =

√
a−

√
a− sinh q −

√
b+(ξ − b)

, C2 =

√
b+

√
a− sinh q −

√
b+(ξ − b)

,

5 Several minimizers

5.1 Euler equations and first integrals

The Euler equation can be naturally generalized to the problem with the vector-
valued minimizer

I(u) = min
u

∫ b

a

F (x, u, u′)dx, (33)

where x is a point in the interval [a, b] and u = (u1(x), . . . , un(x)) is a vector
function. We suppose that F is a twice differentiable function of its arguments.
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Let us compute the variation δI(u) equal to I(u + δu) − I(u), assuming
that the variation of the extremal and its derivative is small and localized. To
compute the Lagrangian at the perturbed trajectory u+δu, we use the expansion

F (x, u+ δu, u′ + δu′) = F (x, u, u′) +

n∑
i=1

∂F

∂ui
δui +

n∑
i=1

∂F

∂u′i
δu′i

We can perform n independent variations of each component of vector u ap-
plying variations δiu = (0, . . . , δui . . . , 0). The increment of the objective func-
tional should be zero for each of these variation, otherwise the functional can
be decreased by one of them. The stationarity condition for any of considered
variations coincides with the one-minimizer case.

δiI(u) =

∫ b

a

(
δui

∂F

∂ui
+ δu′i

∂F

∂u′i

)
dx ≥ 0 i = 1, . . . , n.

Proceeding as before, we obtain the system of n second-order differential equa-
tions,

d

dx

∂F

∂u′i
− ∂F

∂ui
= 0, i = 1, . . . n (34)

and the boundary term
n∑
i=1

∂F

∂u′i
δui

∣∣∣∣∣
x=b

x=a

= 0 (35)

If the value of ui(a) or ui(b) is not prescribed, the natural boundary conditions
∂F
∂u′

i
|x=a or ∂F

∂u′
i
|x=b, respectively, must be satisfied.

The vector form of the system (34),

SF (u) =
d

dx

∂F

∂u′
− ∂F

∂u
= 0, δuT

∂F

∂u′

∣∣∣∣x=b
x=a

= 0 (36)

is identical to the scalar Euler equation. This system corresponds to an defini-
tion of differentiation with respect to a vector argument u.

Example 5.1 Consider the problem with the integrand

F =
1

2
u′21 +

1

2
u′22 − u1u′2 +

1

2
u21 (37)

The system of stationarity conditions is computed to be

d

dx

∂F

∂u′1
− ∂F

∂u1
= u′′1 + u′2 − u1 = 0

d

dx

∂F

∂u′2
− ∂F

∂u2
= (u′2 − u1)′ = 0.

If consists of two differential equations of second order for two unknowns u1(x) and
u2(x).
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First integrals The first integrals that are established for the special cases
of the scalar Euler equation, can also be derived for the vector equation.

1. If F is independent of u′k, then one of the Euler equations degenerates into
algebraic relation:

∂F

∂uk
= 0

and the one of differential equation in (34) becomes an algebraic one. The
variable uk(x) can be a discontinuous function of x in an optimal solution.
Since the Lagrangian is independent of u′k, the discontinuities of uk(x) may
occur along the optimal trajectory.

2. If F is independent of uk, the first integral exists:

∂F

∂u′k
= constant

For instance, the second equation in Example 5.1 can be integrated and
replaced by

u′2 − u1 = constant

3. If F is independent of x, F = F (u,u′) then a first integral exist

W = u′T
∂F

∂u′
− F = constant (38)

Here

u′T
∂F

∂u′
=

n∑
i=1

u′i ·
∂F

∂u′i

For the Example 5.1, this first integral is computed to be

W = u′21 + u′2 (u′2 − u′1)−
(

1

2
u′21 +

1

2
u′22 − u1u′2 +

1

2
u21

)
=

1

2

(
u′21 + u′22 − u21

)
= constant

These three cases do not exhaust all possible first integrals for vector case.
For example, if the functional depends only on, say (u1 + u2), one can hope to
find new invariants by changing the variables. We discuss this matter below in
Sections ?? and ??.

Transversality and Weierstrass-Erdman conditions These conditions
are quite analogous to the scalar case and their derivation is straightforward.
We simply list them here.

The expressions ∂F
∂u′

i
, i = 1 . . . , n remain continuous at every point of an

optimal trajectory, including the points where ui is discontinuous.
If the end point of the trajectory is unknown, the condition

uT
∂F

∂u′
− F = 0

at the end point is satisfied.
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5.2 Variational boundary conditions

Consider the variation of the boundary term (35) which we rewrite here for
convenience

∂F

∂u′1
δu1 + . . .+

∂F

∂u′n
δun

∣∣∣∣x=b
x=a

= 0 (39)

If all variations δui(a), δui(b) are free, it produces 2n boundary conditions

∂F

∂u′i
= 0, x = a and x = b

for Euler equations (34). In the opposite case, when the values of all minimizers
are prescribed at the end points,

ui(a) = uai , ui(b) = ubi , i = 1, . . . , n

then the equation (39) is satisfied, because all variations are zero.

δui(a) = 0, δui(b) = 0, i = 1, . . . , n

If the values of several components of u(a) or u(b) are not given, the variations
of these components are free and the corresponding natural boundary condition
supplements the boundary conditions: For each i = 1, . . . , n one of the two
conditions holds

Either
∂F

∂u′i

∣∣∣∣
x=a,b

= 0 or δui|x=a,b = 0. (40)

The total number of the conditions at each endpoint is n. The missing main
boundary conditions are supplemented by the natural conditions that express
the optimality of the trajectory. This number agrees with the number of bound-
ary conditions needed to solve the boundary value problem for Euler equation.

In a general case, p relations (p < 2n) between boundary values of u are
prescribed,

βk(u1(a), . . . , un(a), u1(b), . . . , un(b), ) = 0 (41)

at the end points x = a and x = b. In this case, we need to find 2n − p
supplementary variational constraints at these points that together with (41)
give 2n boundary conditions for the Euler equation (35) of the order 2n.

The conditions (41) are satisfied at all perturbed trajectories,

βk(w + δw) = 0

where 2n dimensional vector w is the direct sum of u(a) and u(b) defined as:

wk = uk(a) if k = 1, . . . , n
wk = uk−n(b) if k = n+ 1, . . . , 2n.
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The variation δwi is constraint by a linear system

∂βk
∂w

T

δw = 0, k = 1, . . . , p

which shows that the constraints (41) are satisfied at the varied trajectory. A
matrix form of these conditions is

Pδw = 0,

where

P =

 ∂β1

∂u1
. . . ∂β1

∂un

. . . . . . . . .
∂βp

∂u1
. . .

∂βp

∂un


and we may also assume that these conditions are linearly independent. Then
the solution to the system is a vector δwad of the form

δwad = Qv

where v is an arbitrary (2n− p)-dimensional arbitrary vector and (2n− p)× n
matrix Q is a supplement (orthogonal matrix) to P that is defined as a solution
to the matrix equation PQ = 0 which leads to Pδwad = P Qδv = 0 for any v.

Any admissible variation δwad makes the fist variation (36) of the objective
functional vanish; correspondingly, we have(

∂F

∂u′

)T
δwad = 0

Using the representation of δwad and the arbitrariness of the potentials v, we
conclude that the fist variation vanishes is the coefficient by each of these po-
tentials is zero or (

∂F

∂u′

)T
Q = 0 (42)

This representation provides the 2n− p missing boundary conditions.

Example 5.2 Consider again the variational problem with the Lagrangian (37)
assuming that the following boundary conditions are prescribed

u1(a) = 1, β(u1(b), u2(b)) = u21(b) + u22(b) = 1

Find the complementary variational boundary conditions. At the point x = a, the
variation δu1 is zero, and δu2 is arbitrary. The variational condition is

∂F

∂u′2

∣∣∣∣
x=a

= u′2(a)− u1(a) = 0

Since the conditionu1(a) = 1 is prescribed, it becomes

u′2(a) = 1
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At the point x = b, the variations δu1 and δu2 are connected by the relation

∂β

∂u1
δu1 +

∂β

∂u2
δu2 = 2u1δu1 + 2u2δu2 = 0

which implies the representation (δu = Qδv)

δu1 = −u2δv, δu2 = u1δv

where δv is an arbitrary scalar. The variational condition at x = b becomes(
− ∂F
∂u′1

u2 +
∂F

∂u′2
u1

)
x=b

δv = (−u′1u2 + (u′2 − u1)u1)x=b δv = 0 ∀δv

or
−u′1u2 + u1u

′
2 − u21

∣∣
x=b

= 0.

We end up with four boundary conditions:

u1(a) = 1,
u′2(a) = 1,

u21(b) + u22(b) = 1,
u1(b)u′2(b)− u1(b)′u2(b)− u1(b)2 = 0.

The second raw conditions are variational, they are obtained from the minimization
requirement.

Periodic boundary conditions Consider a variational problem with peri-
odic boundary conditions u(a) = u(b). The variational boundary conditions
are

∂F

∂u′

∣∣∣∣
x=a

=
∂F

∂u′

∣∣∣∣
x=b

They are obtained from the expression (39) and equalities δu(a) = δu(b).
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