First variation

(one-variable problem)

January 14, 2013
Contents
1 Stationarity of an integral functional 2
1.1 Euler equation (Optimality conditions) 2
1.2 First integrals: Three special cases 5
1.3 Variational problem as a limit of a finite-dimensional problem 8
2 Stationarity of boundary terms 10
2.1 Variation of boundary conditions 10
2.2 Broken extremal and the Weierstrass-Erdman condition 11
3 Functional dependent on higher derivatives 12
4 Non-fixed interval 14
4.1 Transversality condition 14
4.2 Extremal broken at an unknown point 16
5 Several minimizers 17
5.1 Euler equations and first integrals 17
5.2 Variational boundary conditions 20

Abstract

Since, however, the rules 〈for isoperimetric curves or, in modern terms, extremal problems \rangle were not sufficiently general, the famous Euler undertook the task of reducing all such investigations to a general method which he gave in the work "Essay on a new method of determining the maxima and minima of indefinite integral formulas"; an original work in which the profound science of the calculus shines through. Even so, while the method is ingenious and rich, one must admit that it is not as simple as one might hope in a work of pure analysis.

In "Essay on a new method of determining the maxima and minima of indefinite integral formulas", by Lagrange, 1760

1 Stationarity of an integral functional

The technique was developed by Euler, who also introduced the name "Calculus of variations" in 1766. The method is based on an analysis of infinitesimal variations of a minimizing curve.

The main scheme of the variational method is as follows: Assume that the optimal curve $u(x)$ exists among smooth (twice-differentiable curves). Compare the optimal curve with close-by trajectories $u(x)+\delta u(x)$, where $\delta u(x)$ is small in some sense. Using the smallness of δu, we simplify the comparison, deriving necessary conditions for the optimal trajectory $u(x)$ Variational methods yield to only necessary conditions of optimality because it is assumed that the compared trajectories are close to each other; on the other hand, they are applicable to a great variety of extremal problems called variational problems.

1.1 Euler equation (Optimality conditions)

Consider the problem called the simplest problem of the calculus of variations

$$
\begin{equation*}
\min _{u} I(u), \quad I(u)=\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x, \quad u(a)=u_{a}, u(b)=u_{b} \tag{1}
\end{equation*}
$$

Here integrant F called the Lagrangian, is twice a differentiable function of its three arguments, $I(u)$ is called the cost functional. It is not known a prior i whether the minimizer $u_{0}(x)$ is smooth, but let us assume that it is twice differentiable function of x.

For example, consider the area of the surface of revolution. According to the calculus, the area J of the surface is

$$
A(r)=\pi \int_{a}^{b} r(x) \sqrt{1+r^{\prime}(x)^{2}} d x
$$

where $r(x)$ is the variable distance from the axes $O X$ of rotation. The problem of minimal area of such surface

$$
I=\min _{r(x)} A(u), \quad r(a)=R_{a}, r(b)=R_{b}
$$

is a variational problem. To avoid trivial solution, values $r(a)$ and $r(b)$ are fixed.
To derive necessary condition of optimality of a minimizer u_{0} we use the ideas of calculus, computing an analog of the derivative of I with respect to u (called the functional derivative) and setting it to zero. We suppose that function $u_{0}=u_{0}(x)$ is a minimizer and replace u_{0} with a test function $u_{0}+\delta u$, assuming that the norm $\|\delta u\|$ of the variation δu is infinitesimal. The test function $u_{0}+\delta u$ satisfies the same boundary conditions as u_{0}. If indeed u_{0} is a minimizer, the increment of the cost $\delta I\left(u_{0}\right)=I\left(u_{0}+\delta u\right)-I\left(u_{0}\right)$ is nonnegative:

$$
\begin{equation*}
\delta I\left(u_{0}\right)=\int_{0}^{1}\left(F\left(x, u_{0}+\delta u,\left(u_{0}+\delta u\right)^{\prime}\right)-F\left(x, u_{0}, u_{0}^{\prime}\right)\right) d x \geq 0 \tag{2}
\end{equation*}
$$

If δu is not specified, the equation (2) is not too informative. However, a particular form of the variation δu simplifies (2) and allows for finding an equation for the minimizer. Calculus of variations suggests a set of tests that differ by various assumed form of variations δu.

Euler-Lagrange Equations The simplest variational condition (the EulerLagrange equation) is derived assuming that the variation δu is infinitesimally small and localized:

$$
\delta u=\left\{\begin{array}{lll}
\rho(x) & \text { if } & x \in\left[x_{0}, x_{0}+\varepsilon\right] \tag{3}\\
0 & \text { if } & x \text { is outside of }\left[x_{0}, x_{0}+\varepsilon\right]
\end{array}\right.
$$

Here $\rho(x)$ is a continuous function that vanishes at points x_{0} and $x_{0}+\varepsilon$ and is constrained as follows:

$$
\begin{equation*}
|\rho(x)|<\varepsilon, \quad\left|\rho^{\prime}(x)\right|<\varepsilon \quad \forall x . \tag{4}
\end{equation*}
$$

The integrand at the perturbed trajectory can be expanded into Taylor series,

$$
\begin{aligned}
F\left(x, u_{0}+\delta u,\left(u_{0}+\delta u\right)^{\prime}\right)= & F\left(x, u_{0}, u_{0}^{\prime}\right)+\frac{\partial F\left(x, u_{0}, u_{0}^{\prime}\right)}{\partial u} \delta u \\
& +\frac{\partial F\left(x, u_{0}, u_{0}^{\prime}\right)}{\partial u^{\prime}} \delta u^{\prime}+o\left(\delta u, \delta u^{\prime}\right)
\end{aligned}
$$

Here, δu^{\prime} is derivative of the variation $\delta u, \delta u^{\prime}=(\delta u)^{\prime}, o\left(\delta u, \delta u^{\prime}\right)$ denotes higher order terms which norms are smaller than $\|\delta u\|$ and $\left\|\delta u^{\prime}\right\|$ when $\varepsilon \rightarrow 0$. Substituting this expression into (2) and collecting linear (with respect to ε) terms, we rewrite (2) as

$$
\begin{equation*}
\delta I\left(u_{0}\right)=\int_{a}^{b}\left(\frac{\partial F}{\partial u}(\delta u)+\frac{\partial F}{\underline{\partial u^{\prime}}}(\delta u)^{\prime}\right) d x+o(\varepsilon) \geq 0 \tag{5}
\end{equation*}
$$

where The F is calculated at the examined trajectory u_{0}. To simplify notations, we omit index (0) below.

The variations δu and $(\delta u)^{\prime}$ are mutually dependent and $(\delta u)^{\prime}$ can be expressed in terms of δu. Integration by parts of the underlined term in (5) gives

$$
\int_{a}^{b} \frac{\partial F}{\partial u^{\prime}}(\delta u)^{\prime} d x=\int_{a}^{b}\left(-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}\right) \delta u d x+\left.\frac{\partial F}{\partial u^{\prime}} \delta u\right|_{x=a} ^{x=b}
$$

and we obtain

$$
\begin{equation*}
0 \leq \delta I\left(u_{0}\right)=\int_{a}^{b} S_{F}\left(x, u, u^{\prime}\right) \delta u d x+\left.\frac{\partial F}{\partial u^{\prime}} \delta u\right|_{x=a} ^{x=b}+o(\varepsilon) \tag{6}
\end{equation*}
$$

where S_{F} denotes the functional derivative,

$$
\begin{equation*}
S_{F}\left(x, u, u^{\prime}\right)=-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}+\frac{\partial F}{\partial u} . \tag{7}
\end{equation*}
$$

The nonintegral term in the right-hand side of (6) is zero, because the boundary values of u are prescribed as $u(a)=u_{a}$ and $u(b)=u_{b}$; therefore their variations $\left.\delta u\right|_{x=a}$ and $\left.\delta u\right|_{x=b}$ equal zero,

$$
\left.\delta u\right|_{x=a}=0,\left.\quad \delta u\right|_{x=b}=0
$$

Due to the arbitrariness of δu, we arrive at the following
Theorem 1.1 (Stationarity condition) Any differentiable and bounded minimizer u_{0} of the variational problem (1) is a solution to the boundary value problem

$$
\begin{equation*}
S_{F}\left(x, u, u^{\prime}\right)=\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}-\frac{\partial F}{\partial u}=0 \quad \forall x \in(a, b) ; \quad u(a)=u_{a}, \quad u(b)=u_{b} \tag{8}
\end{equation*}
$$

called the Euler-Lagrange equation.
The Euler-Lagrange equation is also called the stationary condition of optimality because it expresses stationarity of the variation.

Remark 1.1 The stationarity test alone does not allow to conclude whether u is a true minimizer or even to conclude that a solution to (8) exists. For example, the function u that maximizes $I(u)$ satisfies the same Euler-Lagrange equation. The tests that distinguish minimal trajectory from other stationary trajectories are discussed in Chapter ??.

In this derivation, it is assumed that the extremal $u(t)$ is a twice differentiable function of x. Using the chain rule, the left-hand side of equation (8) can be rewritten as

$$
\begin{equation*}
S_{F}\left(x, u, u^{\prime}\right)=\frac{\partial^{2} F}{\partial u^{\prime 2}} u^{\prime \prime}+\frac{\partial^{2} F}{\partial u^{\prime} \partial u} u^{\prime}+\frac{\partial^{2} F}{\partial x \partial u^{\prime}}-\frac{\partial F}{\partial u} \tag{9}
\end{equation*}
$$

Example 1.1 Compute the Euler equation for the problem

$$
I=\min _{u(x)} \int_{0}^{1} F\left(x, u, u^{\prime}\right) d x \quad u(0)=1, u(1)=a, \quad F=\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} u^{2}
$$

We compute $\frac{\partial F}{\partial u^{\prime}}=u^{\prime}, \quad \frac{\partial F}{\partial u}=u$ and the Euler equation becomes

$$
u^{\prime \prime}-u=0 \text { in }(0,1), \quad u(0)=1, u(1)=a
$$

The minimizer $u_{0}(x)$ is

$$
u_{0}(x)=\cosh (x)+\frac{a-\cosh (1)}{\sinh (1)} \sinh (x)
$$

The definition of the weak solution naturally arises from the variational formulation that does not check the behavior of the minimizer in each point but in each infinitesimal interval. The minimizer can change its values at several points, or even at a set of zero measure without effecting the objective functional. In ambiguous cases, one should specify in what sense (Riemann, Lebesgue) the integral is defined and change the definition of variation accordingly.

1.2 First integrals: Three special cases

In several cases, the Euler equation (8) can be integrated at least once. These are the cases when Lagrangian $F\left(x, u, u^{\prime}\right)$ does not depend on one of the arguments. Below, we investigate these cases.

Lagrangian is independent of u^{\prime} Assume that $F=F(x, u)$, and the minimization problem is

$$
\begin{equation*}
I(u)=\min _{u(x)} \int_{0}^{1} F(x, u) d x \tag{10}
\end{equation*}
$$

In this case, the variation does not involve integration by parts, and the minimizer does not need to be continuous. Euler equation (8) becomes an algebraic relation for u

$$
\begin{equation*}
\frac{\partial F}{\partial u}=0 \tag{11}
\end{equation*}
$$

Curve $u(x)$ is determined in each point independently of neighboring points. The boundary conditions in (8) are satisfied by jumps of the extremal $u(x)$ in the end points; these conditions do not affect the objective functional at all.

Example 1.2 Consider the problem

$$
I(u)=\min _{u(x)} \int_{0}^{1}(u-\sin x)^{2} d x, \quad u(0)=1 ; u(1)=0
$$

The minimal value $J\left(u_{0}\right)=0$ corresponds to the discontinuous minimizer

$$
u_{0}(x)= \begin{cases}\sin x & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x=0 \\ 0 & \text { if } x=1\end{cases}
$$

Formally, the discontinuous minimizer contradicts the assumption posed when the Euler equation was derived. To be consistent, we need to repeat the derivation of the necessary condition for the problem (10) without any assumption on the continuity of the minimizer. This derivation is quite obvious.

Lagrangian is independent of u If Lagrangian does not depend on $u, F=$ $F\left(x, u^{\prime}\right)$, Euler equation (8) can be integrated once:

$$
\begin{equation*}
\frac{\partial F}{\partial u^{\prime}}=\text { constant } \tag{12}
\end{equation*}
$$

The first order differential equation (12) for u is the first integral of the problem; it defines a quantity that stays constant everywhere along the optimal trajectory. To find the optimal trajectory, it remains to integrate the first order equation (12) and determine the constants of integration from the boundary conditions.

Example 1.3 Consider the problem

$$
I(u)=\min _{u(x)} \int_{0}^{1}\left(u^{\prime}-\cos x\right)^{2} d x, \quad u(0)=1 ; u(1)=0 .
$$

The first integral is

$$
\frac{\partial F}{\partial u^{\prime}}=u^{\prime}(x)-\cos x=C
$$

Integrating, we find the minimizer,

$$
u(x)=\sin x+C x+C_{1} .
$$

The constants C and C_{1} are found from and the boundary conditions:

$$
C_{1}=1, \quad C=-1-\sin 1,
$$

minimizer u_{0} and the cost of the problem become, respectively

$$
u_{0}(x)=\sin x-(\sin 1+1) x+1 \quad I\left(u_{0}\right)=(\sin 1+1)^{2}
$$

Notice that the Lagrangian in the example (1.2) is the square of difference between the minimizer u and function $\sin x$, and the Lagrangian in the example (1.3) is the square of difference of their derivatives. In the problem (1.2), the minimizer coincides with $\sin x$, and jumps to satisfy the prescribed boundary values. The minimizer u in the example (1.3) cannot jump. Consider a continuous approximation of a derivative u^{\prime} of a discontinuous function; it increases in the proximity of the point of discontinuity and is unbounded, such a growth would increase the objective functional, and therefore it would be nonoptimal. We deal with such problems below in Chapter ??

Lagrangian is independent of x If $F=F\left(u, u^{\prime}\right)$, equation (8) has the first integral:

$$
\begin{equation*}
W\left(u, u^{\prime}\right)=\text { constant } \tag{13}
\end{equation*}
$$

where

$$
W\left(u, u^{\prime}\right)=u^{\prime} \frac{\partial F}{\partial u^{\prime}}-F
$$

Indeed, compute the x-derivative of $W\left(u, u^{\prime}\right)$ which must be equal to zero by virtue of (13):

$$
\begin{aligned}
& \frac{d}{d x} W\left(u, u^{\prime}\right)= \\
& {\left[u^{\prime \prime} \frac{\partial F}{\partial u^{\prime}}+u^{\prime}\left(\frac{\partial^{2} F}{\partial u^{\prime} \partial u} u^{\prime}+\frac{\partial^{2} F}{\partial u^{2}} u^{\prime \prime}\right)\right]-\frac{\partial F}{\partial u} u^{\prime}-\frac{\partial F}{\partial u^{\prime}} u^{\prime \prime}=0}
\end{aligned}
$$

where the expression in square brackets is the derivative of the first term of $W\left(u, u^{\prime}\right)$. Cancelling the equal terms, we bring this equation to the form

$$
\begin{equation*}
u^{\prime}\left(\frac{\partial^{2} F}{\partial u^{\prime 2}} u^{\prime \prime}+\frac{\partial^{2} F}{\partial u^{\prime} \partial u} u^{\prime}-\frac{\partial F}{\partial u}\right)=0 \tag{14}
\end{equation*}
$$

The expression in parenthesis coincide with the left-hand-side term $S\left(x, u, u^{\prime}\right)$ of the Euler equation in the form (9), simplified for the considered case (F is independent of $\left.x, F=F\left(u, u^{\prime}\right)\right)$. W is constant at any solution $u(x)$ of Euler equation. Instead of solving the Euler equation, we may solve the first-order equation $W=0$ obtaining the same solution.

Example 1.4 Consider the Lagrangian

$$
F=\frac{1}{2}\left[\left(u^{\prime}\right)^{2}-\omega^{2} u^{2}\right]
$$

The Euler equation is

$$
u^{\prime \prime}+\omega^{2} u=0
$$

The first integral is

$$
W=\frac{1}{2}\left(\omega^{2} u^{2}+\left(u^{\prime}\right)^{2}\right)=C^{2}=\mathrm{constant}
$$

Let us check the constancy of the first integral. The solution u of the Euler equation is equal

$$
u=A \cos (\omega x)+B \sin (\omega x)
$$

where A and B are constants. Substituting the solution into the expression for the first integral, we compute

$$
\begin{aligned}
W=\left(u^{\prime}\right)^{2}+\omega^{2} u^{2}= & {[-A \omega \sin (c x)+B \omega \cos (\omega x)]^{2} } \\
& +\omega^{2}[A \cos (\omega x)+B \sin (\omega x)]^{2}=\omega^{2}\left(A^{2}+B^{2}\right)
\end{aligned}
$$

We have shown that W is constant at the optimal trajectory. In mechanical application, W is the total energy of the oscillator.

1.3 Variational problem as a limit of a finite-dimensional problem

Here, we derive Euler equation for a finite-dimensional problem that approximate the simplest variational problem

$$
\min _{u(x)} I(u), \quad I(u)=\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x
$$

Consider a class of piece-wise constant discontinuous functions \mathcal{U}_{N} :

$$
\bar{u}(x) \in \mathcal{U}_{N}, \quad \text { if } \bar{u}(x)=u_{i} \quad \forall x \in\left[a+\frac{i}{N}(b-a)\right]
$$

A function \bar{u} in \mathcal{U}_{N} is defined by an N-dimensional vector $\left\{u_{1}, \ldots u_{N}\right\}$.
Rewriting the variational problem for this class of minimizers, we replace the derivative $u^{\prime}(x)$ with a finite difference $\operatorname{Diff}\left(u_{i}\right)$

$$
\begin{equation*}
\operatorname{Diff}\left(u_{i}\right)=\frac{1}{\Delta}\left(u_{i}-u_{i-1}\right), \quad \Delta=\frac{b-a}{N} \tag{15}
\end{equation*}
$$

when $N \rightarrow \infty$, this operator tends to the derivative. The variational problem is replaced by finite-dimensional optimization problem:

$$
\begin{equation*}
\min _{u_{1}, \ldots, u_{N-1}} I_{N} \quad I_{N}=\Delta \sum_{i=1}^{N} F_{i}\left(u_{i}, z_{i}\right), \quad z_{i}=\operatorname{Diff}\left(z_{i}\right)=\frac{1}{\Delta}\left(z_{i}-z_{i-1}\right) \tag{16}
\end{equation*}
$$

Compute the stationary conditions for the minimum of $I_{N}(u)$

$$
\frac{\partial I_{N}}{\partial u_{i}}=0, \quad i=1 \ldots, N
$$

Only two terms, F_{i} and F_{i+1}, in the above sum depend on u_{i} : the first depends on u_{i} directly and also through the operator $z_{i}=\operatorname{Diff}\left(u_{i}\right)$, and the second- only through $z_{i+1}=\operatorname{Diff}\left(u_{i+1}\right)$:

$$
\begin{aligned}
\frac{d F_{i}}{d u_{i}} & =\frac{\partial F_{i}}{\partial u_{i}}+\frac{\partial F_{i}}{\partial z_{i}} \frac{1}{\Delta}, \quad \frac{d F_{i+1}}{d u_{i}}=-\frac{\partial F_{i+1}}{\partial z_{i+1}} \frac{1}{\Delta} \\
\frac{d F_{k}}{d u_{i}} & =0, \quad k \neq i, k \neq i+1
\end{aligned}
$$

Collecting the terms, we write the stationary condition with respect to u_{i} :

$$
\frac{\partial I_{N}}{\partial u_{i}}=\frac{\partial F_{i}}{\partial u_{i}}+\frac{1}{\Delta}\left(\frac{\partial F_{i}}{\partial z}-\frac{\partial F_{i+1}}{\partial z}\right)=0
$$

or, recalling the definition (15) of Diff-operator, the form

$$
\frac{\partial I_{N}}{\partial u_{i}}=\frac{\partial F_{i}}{\partial u_{i}}-\operatorname{Diff}\left(\frac{\partial F_{i+1}}{\partial z}\right)=0
$$

The initial and the final point u_{0} and u_{N} enter the difference scheme only once, therefore the optimality conditions are different. They are, respectively,

$$
\frac{\partial F_{N+1}}{\partial \operatorname{Diff}\left(u_{N+1}\right)}=0 ; \quad \frac{\partial F_{o}}{\partial \operatorname{Diff}\left(u_{0}\right)}=0
$$

Formally passing to the limit $N \rightarrow \infty$, Diff $\rightarrow \frac{d}{d x}, z \rightarrow u^{\prime}$ replacing the index $\left({ }_{i}\right)$ with a continuous variable x, vector of values $\left\{u_{k}\right\}$ of the piece-wise constant function with the continuous function $u(x)$, difference operator Diff with the derivative $\frac{d}{d x}$; then

$$
\Delta \sum_{i=1}^{N} F_{i}\left(u_{i}, \operatorname{Diff} u_{i}\right) \rightarrow \int_{a}^{b} F\left(x, u, u^{\prime}\right) d x
$$

and

$$
\frac{\partial F_{i}}{\partial u_{i}}-\operatorname{Diff}\left(\frac{\partial F_{i+1}}{\partial z}\right) \rightarrow \frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}
$$

The conditions for the end points become the natural variational conditions:

$$
\frac{\partial F}{\partial u^{\prime}(0)}=0, \quad \frac{\partial F}{\partial u^{\prime}(T)}=0
$$

Remark 1.2 So far, we followed the formal scheme of necessary conditions, thereby tacitly assuming that all derivatives of the Lagrangian exist, the increment of the functional is correctly represented by the first term of its power expansion, and the limit of the sequence of finite-dimensional problems exist and does not depend on the partition $\left\{x_{1}, \ldots x_{N}\right\}$ if only $\left|x_{k}-x_{k-1}\right| \rightarrow 0$ for all k. We also indirectly assume that the Euler equation has at least one solution consistent with boundary conditions.

If all the made assumptions are correct, we obtain a curve that might be a minimizer because it cannot be disproved by the stationary test. In other terms, we find that is there is no other close-by classical curve that correspond to a smaller value of the functional. This statement about the optimality seems to be rather weak but this is exactly what the calculus of variation can give us. On the other hand, the variational conditions are universal and, being appropriately used and supplemented by other conditions, lead to a very detailed description of the extremal as we show later in the course.

Remark 1.3 In the above procedure, we assume that the limits of the components of the vector $\left\{u_{k}\right\}$ represent values of a smooth function in the close-by points x_{1}, \ldots, x_{N}. At the other hand, u_{k} are solutions of optimization problems with the coefficients that slowly vary with the number k. We need to answer the question whether the solution of a minimization problem tends to is a differentiable function of x; that is whether the limit

$$
\lim _{k \rightarrow \infty} \frac{u_{k}-u_{k-1}}{x_{k}-x_{k-1}}
$$

exists and this is not always the case. We address this question later in Chapter ??

2 Stationarity of boundary terms

2.1 Variation of boundary conditions

Variational conditions and natural conditions The value of minimizer may not be specified on one or both ends of the interval $[a, b]$. In this case, these values are calculated by the minimization of the goal functional together with the minimizer. Consider a variational problem where the boundary value at the right end b of the interval is not defined and the functional directly depends on this value,

$$
\begin{equation*}
\min _{u(x): u(a)=u_{a}} I(u), \quad I(u)=\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x+f(u(b)) \tag{17}
\end{equation*}
$$

The Euler equation for the problem remain the same, $S\left(x, u, u^{\prime}\right)=0$, but this time it must be supplemented by a variational boundary condition that comes from the requirement of the stationarity of the minimizer with respect to variation of the boundary term. This term is

$$
\left.\left(\frac{\partial F}{\partial u^{\prime}}+\frac{\partial f}{\partial u}\right)\right|_{x=b} \delta u(b)
$$

The first term comes from the integration by part in the derivation of Euler equation, see (6), and the second is the variation of the last term in the objective functional (17). Because the sign of the variation $\delta u(b)$ is arbitrary, the stationarity condition has the form

$$
\begin{equation*}
\left.\frac{\partial F}{\partial u^{\prime}}\right|_{x=b}+\left.\frac{\partial f}{\partial u}\right|_{x=b}=0 \tag{18}
\end{equation*}
$$

This equality provides the missing boundary condition at the endpoint $x=b$ for the second order Euler equation. Similar condition can be derived for the point $x=a$ if the value at this point is not prescribed.

Example 2.1 Minimize the functional

$$
I(u)=\min _{u} \int_{0}^{1} \frac{1}{2}\left(u^{\prime}\right)^{2} d x+A u(1), \quad u(0)=0
$$

Here, we want to minimize the endpoint value and we do not want the trajectory be too steep. The Euler equation $u^{\prime \prime}=0$ must be integrated with boundary conditions $u(0)=0$ and (see (18)) $u^{\prime}(1)+A=0$ The extremal is a straight line, $u=-A x$. The cost of the problem is $I=-\frac{1}{2} A^{2}$.

If $f=0$, the condition (18) becomes

$$
\begin{equation*}
\left.\frac{\partial F}{\partial u^{\prime}}\right|_{x=b}=0 \tag{19}
\end{equation*}
$$

and it is called the natural boundary condition.
Example 2.2 Consider the problem $F=a(x)\left(u^{\prime}\right)^{2}+\phi(x, u)$ where $a(x) \neq 0$ The natural boundary condition is $\left.u^{\prime}\right|_{x=b}=0$.

2.2 Broken extremal and the Weierstrass-Erdman condition

The classical derivation of the Euler equation requires the existence of all second partials of F, and the solution u of the second-order differential equation is required to be twice-differentiable. In some problems, F is only piece-wise twice differentiable; in this case, the extremal consists of several curves - solutions of the Euler equation that are computed at the intervals of smoothness. We consider the question: How to join these pieces together?

The first continuity condition is continuity of the (differentiable) minimizer $u(x)$

$$
\begin{equation*}
[u]_{-}^{+}=0 \quad \text { along the optimal trajectory } u(x) \tag{20}
\end{equation*}
$$

Here $[z]_{-}^{+}=z_{+}-z_{-}$denotes the jump of the variable z.
The extremal u is differentiable, the first derivative u^{\prime} exists at all points of the trajectory. This derivative does not need to be continuous. Instead, Euler equation requests the differentiability of $\frac{\partial F}{\partial u^{\prime}}$ to ensure the existence of the term $\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}$ in the Euler equation.

Integrating the stationarity condition (8), we obtain stationarity in the integral form

$$
\int_{a}^{x} S_{F}\left(x, u, u^{\prime}\right) d x=\int_{a}^{x}\left(\frac{d}{d x} \frac{\partial F\left(x, u, u^{\prime}\right)}{\partial u^{\prime}}-\frac{\partial F\left(x, u, u^{\prime}\right)}{\partial u}\right) d x=0
$$

or

$$
\begin{equation*}
\frac{\partial F\left(x, u, u^{\prime}\right)}{\partial u^{\prime}}=\int_{x_{0}}^{x} \frac{\partial F\left(x, u, u^{\prime}\right)}{\partial u} d x+\left.\frac{\partial F\left(x, u, u^{\prime}\right)}{\partial u^{\prime}}\right|_{x=a} \tag{21}
\end{equation*}
$$

If $\frac{\partial F}{\partial u}$ is bounded at the optimal trajectory, the right-hand side is a continuous function of x, and so is the left-hand side. This requirement of continuity of an optimal trajectory is called the Weierstrass-Erdman condition on broken extremal.

Theorem 2.1 At any point of the optimal trajectory, the Weierstrass-Erdman condition must be satisfied:

$$
\begin{equation*}
\left[\frac{\partial F}{\partial u^{\prime}}\right]_{-}^{+}=0 \quad \text { along the optimal trajectory } u(x) \tag{22}
\end{equation*}
$$

Example 2.3 (Broken extremal) Consider the Lagrangian

$$
F=\frac{1}{2} c(x)\left(u^{\prime}\right)^{2}+\frac{1}{2} u^{2}, \quad c(x)= \begin{cases}c_{1} & \text { if } x \in\left[a, x_{*}\right) \\ c_{2} & \text { if } x \in\left(x_{*}, b\right]\end{cases}
$$

where x_{*} is point in (a, b). The Euler equation is held everywhere in (a, b) except of the point x_{*},

$$
\begin{array}{cc}
\frac{d}{d x}\left[c_{1} u^{\prime}\right]-u=0 & \text { if } x \in\left[a, x_{*}\right) \\
\frac{d}{d x}\left[c_{2} u^{\prime}\right]-u=0 & \text { if } x \in\left(x_{*}, b\right]
\end{array}
$$

At $x=x_{*}$, the continuity conditions hold,

$$
u\left(x_{*}-0\right)=u\left(x_{*}+0\right), \quad c_{1} u^{\prime}\left(x_{*}-0\right)=c_{2} u^{\prime}\left(x_{*}+0\right)
$$

The derivative $u^{\prime}(x)$ itself is discontinuous; its jump is determined by the jump in the coefficients:

$$
\frac{u^{\prime}\left(x_{*}+0\right)}{u^{\prime}\left(x_{*}-0\right)}=\frac{c_{1}}{c_{2}}
$$

These conditions together with the Euler equation and boundary conditions determine the optimal trajectory.

3 Functional dependent on higher derivatives

Consider a more general type variational problem with the Lagrangian that depends on the minimizer and its first and second derivative,

$$
J=\int_{a}^{b} F\left(x, u, u^{\prime}, u^{\prime \prime}\right) d x
$$

The Euler equation is derived similarly to the simplest case: The variation of the goal functional is

$$
\delta J=\int_{a}^{b}\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}+\frac{\partial F}{\partial u^{\prime \prime}} \delta u^{\prime \prime}\right) d x
$$

Integrating by parts the second term and twice the third term, we obtain

$$
\begin{align*}
\delta J= & \int_{a}^{b}\left(\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial F}{\partial u^{\prime \prime}}\right) \delta u d x \\
& +\left[\frac{\partial F}{\partial u^{\prime}} \delta u+\frac{\partial F}{\partial u^{\prime \prime}} \delta u^{\prime}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime \prime}} \delta u\right]_{x=a}^{x=b} \tag{23}
\end{align*}
$$

The stationarity condition becomes the fourth-order differential equation

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} \frac{\partial F}{\partial u^{\prime \prime}}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}+\frac{\partial F}{\partial u}=0 \tag{24}
\end{equation*}
$$

supplemented by two natural boundary conditions on each end,

$$
\begin{equation*}
\delta u^{\prime} \frac{\partial F}{\partial u^{\prime \prime}}=0, \quad \delta u\left[\frac{\partial F}{\partial u^{\prime}}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime \prime}}\right]=0 \quad \text { at } x=a \text { and } x=b \tag{25}
\end{equation*}
$$

or by the correspondent main conditions posed on the minimizer u and its derivative u^{\prime} at the end points.

Example 3.1 The equilibrium of an elastic bending beam correspond to the solution of the variational problem

$$
\begin{equation*}
\min _{w(x)} \int_{0}^{L}\left(\frac{1}{2}\left(E(x) w^{\prime \prime}\right)^{2}-q(x) w\right) d x \tag{26}
\end{equation*}
$$

where $w(x)$ is the deflection of the point x of the beam, $E(x)$ is the elastic stiffness of the material that can vary with $x, q(x)$ is the load that bends the beam. Any of the following kinematic boundary conditions can be considered at each end of the beam.
(1) A clamped end: $w(a)=0, \quad w^{\prime}(a)=0$
(2) a simply supported end $w(a)=0$.
(3) a free end (no kinematic conditions).

Let us find equation for equilibrium and the missing boundary conditions in the second and third case. The Euler equation (24) becomes

$$
\left(E w^{\prime \prime}\right)^{\prime \prime}-q=0 \quad \in(a, b)
$$

The equations (25) become

$$
\delta u^{\prime}\left(E u^{\prime \prime}\right)=0, \quad \delta u\left(\left(E w^{\prime \prime}\right)^{\prime}\right)=0
$$

In the case (2) (simply supported end), the complementary variational boundary condition is $E u^{\prime \prime}=0$, it expresses vanishing of the bending momentum at the simply supported end. In the case (3), the variational conditions are $E u^{\prime \prime}=0$ and $\left(E w^{\prime \prime}\right)^{\prime}=0$; the last expresses vanishing of the bending force at the free end (the bending momentum vanishes here as well).

Generalization The Lagrangian

$$
F\left(x, u, u^{\prime}, \ldots, u^{(n)}\right)
$$

dependent on first k derivatives of u dependent on higher derivatives of u is considered similarly. The stationary condition is the $2 k$-order differential equation

$$
\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}+\ldots+(-1)^{k} \frac{d^{k}}{d x^{k}} \frac{\partial F}{\partial u^{(k)}}=0
$$

supplemented at each end $x=a$ and $x=b$ of the trajectory by k boundary conditions

$$
\begin{aligned}
& {\left.\left[\frac{\partial F}{\partial u^{(k)}}\right] \delta u^{(k-1)}\right|_{x=a, b}=0} \\
& {\left.\left[\frac{\partial F}{\partial u^{(k-1)}}-\frac{d}{d x} \frac{\partial F}{\partial u^{(k)}}\right] \delta u^{(k-2)}\right|_{x=a, b}=0} \\
& \ldots \\
& {\left.\left[\frac{\partial F}{\partial u^{\prime}}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime \prime}}+\ldots+(-1)^{k} \frac{d^{(k-1)}}{d x^{(k-1)}} \frac{\partial F}{\partial u^{(k)}}\right] \delta u\right|_{x=a, b}=0}
\end{aligned}
$$

If u is a vector minimizer, u can be replaced by a vector but the structure of the necessary conditions stay the same.

4 Non-fixed interval

4.1 Transversality condition

Free boundary Consider now the case when the interval $[a, b]$ is not fixed, but the end point is to be chosen so that it minimizes the functional. Let us compute the difference between the two functionals over two different intervals

$$
\begin{array}{r}
\delta I=\int_{a}^{b+\delta x} F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right) d x-\int_{a}^{b} F\left(x, u, u^{\prime}\right) d x \\
=\int_{a}^{b}\left(F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right)-F\left(x, u, u^{\prime}\right)\right) d x+\int_{b}^{b+\delta x} F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right) d x
\end{array}
$$

The second integral is estimated as

$$
\int_{b}^{b+\delta x} F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right) d x=\left.F\left(x, u, u^{\prime}\right)\right|_{x=b} \delta x+o(\|\delta u\|,|\delta x|)
$$

and the first integral is computed as before with integration by parts:

$$
\int_{a}^{b} S_{F}\left(x, u, u^{\prime}\right) \delta u d x+\left.\frac{\partial F}{\partial u^{\prime}}\right|_{x=b} \delta u(b)=0
$$

1. Suppose that no boundary conditions are imposed at the minimizer at the point $x=b$. Because of arbitrariness of δx and δu, we arrive at the conditions:

$$
S_{F}\left(x, u, u^{\prime}\right)=0 \quad x \in(a, b),\left.\quad \frac{\partial F}{\partial u^{\prime}}\right|_{x=b}=0
$$

and

$$
\begin{equation*}
\left.F\left(x, u, u^{\prime}\right)\right|_{x=b}=0 \tag{27}
\end{equation*}
$$

Euler equation for the extremal satisfies an extra boundary condition (27), but has also an additional degree of freedom: unknown coordinate b.

Example 4.1 Consider the problem

$$
\min _{u(x), s} \int_{0}^{s}\left(\frac{1}{2} u^{\prime 2}-u+x\right) d x \quad u(0)=0
$$

The Euler equation $u^{\prime \prime}+1=0$ and the condition at $u(0)=0$ corresponds to the extremal

$$
u=-\frac{1}{2} x^{2}+A x, \quad u^{\prime}=-x+A
$$

where A is a parameter. The condition $\frac{\partial F}{\partial u^{\prime}}=u^{\prime}=0$ at the unknown right end $x=s$ gives $s=A$. The transversality condition $F=0$ or

$$
\left.(-u+x)\right|_{x=A=s}=\frac{1}{2} s^{2}-s^{2}+s=s\left(1-\frac{1}{2} s\right)=0
$$

We find $s=2, u=-\frac{1}{2} x^{2}+2 x$.
2. Next, consider the problem in which the boundary data at b is prescribed, $u=\beta$, but the value of b is not known. In the perturbed trajectory, the boundary condition is $u(b+\delta x)=\beta$. The value of $u(b+\delta x)$ is an extrapolation of $u(x)$ as follows

$$
u(b+\delta x)=u(b)+u^{\prime}(b) \delta x+o(\|\delta u\|,|\delta x|)
$$

Therefore, the value $(u+\delta u)_{x=b}$ depends on $\delta x, u(b)=\beta-u^{\prime}(b) \delta x$ or $\delta u(b)=$ $-u^{\prime}(b) \delta x$. Combining the depending on δx terms, we obtain the condition

$$
\left.\left(F-\frac{\partial F}{\partial u^{\prime}} u^{\prime}(b)\right)\right|_{x=b} \delta x
$$

Because δx is arbitrary, the boundary conditions are: $u=\beta$ and

$$
\begin{equation*}
\left.\left(F\left(x, u, u^{\prime}\right)-u^{\prime} \frac{\partial F}{\partial u^{\prime}}\right)\right|_{x=b}=0 \tag{28}
\end{equation*}
$$

Notice that the condition (28) at the unknown end is identical to the first integral (13) of the problem in the case when $F\left(u, u^{\prime}\right)$ is independent of x. This integral is constant along the trajectory. therefore condition (28) cannot be satisfied at an isolated point.
3. Finally, consider the problem when the rajectory ends at a curve. If the boundary value depends on $b, u(b)=\phi(b)$, then $\delta u=\phi^{\prime} \delta x-u^{\prime} \delta x$. The stationarity conditions become

$$
\begin{equation*}
u(b)=\phi(b),\left.\quad\left(F-\left(u^{\prime}-\phi^{\prime}\right) \frac{\partial F}{\partial u^{\prime}}\right)\right|_{x=b}=0 \tag{29}
\end{equation*}
$$

The next example deals with a constraint at the unknown length of the interval and the boundary data.

Example 4.2 Find the shortest path between the origin and a curve $\phi(x)$.
The path length is given by

$$
I=\min _{y(x), s} \int_{0}^{s} \sqrt{1+y^{\prime 2}} d x, \quad u(0)=0
$$

At the end point x the path meets the curve, therefore $y(s)=\phi(s)$ or

$$
\begin{equation*}
\delta y=\phi^{\prime}(s) \delta s \tag{30}
\end{equation*}
$$

The Euler equation

$$
\frac{\partial F}{\partial y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=C
$$

shows that $y^{\prime}=$ constant, therefore the path is a straight line, $y=A x$ as expected. At the point s, the variation is

$$
\left(u^{\prime} \frac{\partial F}{\partial y^{\prime}}-F\right) \delta x+y^{\prime} \frac{\partial F}{\partial y^{\prime}} \delta y=\frac{1}{\sqrt{1+y^{\prime 2}}} \delta x+\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}} \delta u
$$

The stationarity gives the relation. $-\delta x+y^{\prime} \delta u=0$. Comparing it with the constraint (30), we conclude that $y^{\prime}(s) \phi^{\prime}(s)=-1$, or that the shortest path is a line orthogonal to the curve $\phi(x)$, as it is expected.

4.2 Extremal broken at an unknown point

Combining the techniques, we may address the problem of en extremal broken in an unknown point. The position of this point is determined from the minimization requirement. Assume that Lagrangian has the form

$$
F\left(x, u, u^{\prime}\right)= \begin{cases}F_{-}\left(x, u, u^{\prime}\right) & \text { if } x \in(a, \xi) \\ F_{+}\left(x, u, u^{\prime}\right) & \text { if } x \in(\xi, b)\end{cases}
$$

where ξ is an unknown point in the interval (a, b) of the integration. The Euler equation is

$$
S_{F}(u)= \begin{cases}S_{F_{-}}(u) & \text { if } x \in(a, \xi) \\ S_{F_{+}}(u) & \text { if } x \in(\xi, b)\end{cases}
$$

The stationarity conditions at the unknown point ξ consist of stationarity of the trajectory

$$
\begin{equation*}
\frac{\partial F_{+}}{\partial u^{\prime}}=\frac{\partial F_{0}}{\partial u^{\prime}} \tag{31}
\end{equation*}
$$

and stationarity of the position of the transit point

$$
\begin{equation*}
F_{+}(u)-u_{+}^{\prime} \frac{\partial F_{+}}{\partial u^{\prime}}=F_{-}(u)-u_{-}^{\prime} \frac{\partial F_{-}}{\partial u^{\prime}} . \tag{32}
\end{equation*}
$$

They are derived by the same procedure as the conditions at the end point. The variation δx of the transit point $\delta x=\delta x_{+}=-\delta x_{-}$increases the first part of the trajectory and decreases the second part, or vise versa, which explains the structure of the stationarity conditions.

In particular, if the Lagrangian is independent of x, the condition (32) expresses the constancy of the first integral (13) at the point ξ.

Example 4.3 Consider the problem with Lagrangian

$$
F\left(x, u, u^{\prime}\right)= \begin{cases}a_{+} u^{\prime 2}+b_{+} u^{2} & \text { if } x \in(a, \xi) \\ a_{-} u^{2} & \text { if } x \in(\xi, b)\end{cases}
$$

and boundary conditions

$$
u(a)=0, \quad u(b)=1
$$

The Euler equation is

$$
S_{F}(u)= \begin{cases}a_{+} u^{\prime \prime}-b_{+} u=0 & \text { if } x \in(a, \xi) \\ a_{-} u^{\prime \prime}=0 & \text { if } x \in(\xi, b)\end{cases}
$$

The solution to this equation that satisfies the boundary conditions is

$$
\begin{array}{ll}
u_{+}(x)=C_{1} \sinh \left(\sqrt{\frac{b_{+}}{a_{+}}}(x-a)\right) & \text { if } x \in(a, \xi) ; \\
u_{-}(x)=C_{2}(x-b)+1 & \text { if } x \in(\xi, b)
\end{array}
$$

it depends on three constants ξ, C_{1}, and C_{2} (Notice that the coefficient a_{-}does not enter the Euler equations). These constants are determined from three conditions
at the unknown point ξ which express
(1) continuity of the extremal

$$
u_{+}(\xi)=u_{-}(\xi)
$$

(2) Weierstrass-Erdman condition

$$
a_{+} u_{+}^{\prime}(\xi)=a_{-} u_{-}^{\prime}(\xi)
$$

(3) transversality condition

$$
-a_{+}\left(u_{+}^{\prime}(\xi)\right)^{2}+b_{+} u(\xi)^{2}=-a_{-}\left(u_{-}^{\prime}(\xi)\right)^{2}
$$

The transversality condition states the equality of two first integral. It is simplified to

$$
C_{1}^{2} b_{+}=C_{2}^{2} a_{-}
$$

From the Weierstrass-Erdman condition, we find

$$
C_{1} \sqrt{\frac{a_{+}}{b_{+}}} \cosh q=C_{2}, \quad \text { where } q=\sqrt{\frac{b_{+}}{a_{+}}}(\xi-a)
$$

The first condition and the definition of q allows for determination of ξ :

$$
\cosh q=\sqrt{a_{+} a_{-}}, \quad \Rightarrow \quad \xi=a+\frac{a_{+}}{b_{+}} \cosh ^{-1} \sqrt{a_{+} a_{-}}
$$

Finally, we define constants C_{1} and C_{2} from the continuity

$$
C_{1} \sinh q=1+C_{2}(\xi-b)
$$

and transversality conditions:

$$
C_{1}=\frac{\sqrt{a_{-}}}{\sqrt{a_{-}} \sinh q-\sqrt{b_{+}}(\xi-b)}, \quad C_{2}=\frac{\sqrt{b_{+}}}{\sqrt{a_{-}} \sinh q-\sqrt{b_{+}}(\xi-b)},
$$

5 Several minimizers

5.1 Euler equations and first integrals

The Euler equation can be naturally generalized to the problem with the vectorvalued minimizer

$$
\begin{equation*}
I(u)=\min _{u} \int_{a}^{b} F\left(x, u, u^{\prime}\right) d x \tag{33}
\end{equation*}
$$

where x is a point in the interval $[a, b]$ and $u=\left(u_{1}(x), \ldots, u_{n}(x)\right)$ is a vector function. We suppose that F is a twice differentiable function of its arguments.

Let us compute the variation $\delta I(u)$ equal to $I(u+\delta u)-I(u)$, assuming that the variation of the extremal and its derivative is small and localized. To compute the Lagrangian at the perturbed trajectory $u+\delta u$, we use the expansion

$$
F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right)=F\left(x, u, u^{\prime}\right)+\sum_{i=1}^{n} \frac{\partial F}{\partial u_{i}} \delta u_{i}+\sum_{i=1}^{n} \frac{\partial F}{\partial u_{i}^{\prime}} \delta u_{i}^{\prime}
$$

We can perform n independent variations of each component of vector u applying variations $\delta_{i} u=\left(0, \ldots, \delta u_{i} \ldots, 0\right)$. The increment of the objective functional should be zero for each of these variation, otherwise the functional can be decreased by one of them. The stationarity condition for any of considered variations coincides with the one-minimizer case.

$$
\delta_{i} I(u)=\int_{a}^{b}\left(\delta u_{i} \frac{\partial F}{\partial u_{i}}+\delta u_{i}^{\prime} \frac{\partial F}{\partial u_{i}^{\prime}}\right) d x \geq 0 \quad i=1, \ldots, n .
$$

Proceeding as before, we obtain the system of n second-order differential equations,

$$
\begin{equation*}
\frac{d}{d x} \frac{\partial F}{\partial u_{i}^{\prime}}-\frac{\partial F}{\partial u_{i}}=0, \quad i=1, \ldots n \tag{34}
\end{equation*}
$$

and the boundary term

$$
\begin{equation*}
\left.\sum_{i=1}^{n} \frac{\partial F}{\partial u_{i}^{\prime}} \delta u_{i}\right|_{x=a} ^{x=b}=0 \tag{35}
\end{equation*}
$$

If the value of $u_{i}(a)$ or $u_{i}(b)$ is not prescribed, the natural boundary conditions $\left.\frac{\partial F}{\partial u_{i}^{\prime}}\right|_{x=a}$ or $\left.\frac{\partial F}{\partial u_{i}^{\prime}}\right|_{x=b}$, respectively, must be satisfied.

The vector form of the system (34),

$$
\begin{equation*}
S_{F}(u)=\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}-\frac{\partial F}{\partial u}=0,\left.\quad \delta u^{T} \frac{\partial F}{\partial u^{\prime}}\right|_{x=a} ^{x=b}=0 \tag{36}
\end{equation*}
$$

is identical to the scalar Euler equation. This system corresponds to an definition of differentiation with respect to a vector argument u.

Example 5.1 Consider the problem with the integrand

$$
\begin{equation*}
F=\frac{1}{2} u_{1}^{\prime 2}+\frac{1}{2} u_{2}^{\prime 2}-u_{1} u_{2}^{\prime}+\frac{1}{2} u_{1}^{2} \tag{37}
\end{equation*}
$$

The system of stationarity conditions is computed to be

$$
\begin{aligned}
& \frac{d}{d x} \frac{\partial F}{\partial u_{1}^{\prime}}-\frac{\partial F}{\partial u_{1}}=u_{1}^{\prime \prime}+u_{2}^{\prime}-u_{1}=0 \\
& \frac{d}{d x} \frac{\partial F}{\partial u_{2}^{\prime}}-\frac{\partial F}{\partial u_{2}}=\left(u_{2}^{\prime}-u_{1}\right)^{\prime}=0
\end{aligned}
$$

If consists of two differential equations of second order for two unknowns $u_{1}(x)$ and $u_{2}(x)$.

First integrals The first integrals that are established for the special cases of the scalar Euler equation, can also be derived for the vector equation.

1. If F is independent of u_{k}^{\prime}, then one of the Euler equations degenerates into algebraic relation:

$$
\frac{\partial F}{\partial u_{k}}=0
$$

and the one of differential equation in (34) becomes an algebraic one. The variable $u_{k}(x)$ can be a discontinuous function of x in an optimal solution. Since the Lagrangian is independent of u_{k}^{\prime}, the discontinuities of $u_{k}(x)$ may occur along the optimal trajectory.
2. If F is independent of u_{k}, the first integral exists:

$$
\frac{\partial F}{\partial u_{k}^{\prime}}=\mathrm{constant}
$$

For instance, the second equation in Example 5.1 can be integrated and replaced by

$$
u_{2}^{\prime}-u_{1}=\text { constant }
$$

3. If F is independent of $x, F=F\left(\boldsymbol{u}, \boldsymbol{u}^{\prime}\right)$ then a first integral exist

$$
\begin{equation*}
W=u^{\prime T} \frac{\partial F}{\partial u^{\prime}}-F=\mathrm{constant} \tag{38}
\end{equation*}
$$

Here

$$
u^{\prime T} \frac{\partial F}{\partial u^{\prime}}=\sum_{i=1}^{n} u_{i}^{\prime} \cdot \frac{\partial F}{\partial u_{i}^{\prime}}
$$

For the Example 5.1, this first integral is computed to be

$$
\begin{aligned}
W & =u_{1}^{\prime 2}+u_{2}^{\prime}\left(u_{2}^{\prime}-u_{1}^{\prime}\right)-\left(\frac{1}{2} u_{1}^{\prime 2}+\frac{1}{2} u_{2}^{\prime 2}-u_{1} u_{2}^{\prime}+\frac{1}{2} u_{1}^{2}\right) \\
& =\frac{1}{2}\left(u_{1}^{\prime 2}+u_{2}^{\prime 2}-u_{1}^{2}\right)=\mathrm{constant}
\end{aligned}
$$

These three cases do not exhaust all possible first integrals for vector case. For example, if the functional depends only on, say $\left(u_{1}+u_{2}\right)$, one can hope to find new invariants by changing the variables. We discuss this matter below in Sections ?? and ??.

Transversality and Weierstrass-Erdman conditions These conditions are quite analogous to the scalar case and their derivation is straightforward. We simply list them here.

The expressions $\frac{\partial F}{\partial u_{i}^{\prime}}, i=1 \ldots, n$ remain continuous at every point of an optimal trajectory, including the points where u_{i} is discontinuous.

If the end point of the trajectory is unknown, the condition

$$
u^{T} \frac{\partial F}{\partial u^{\prime}}-F=0
$$

at the end point is satisfied.

5.2 Variational boundary conditions

Consider the variation of the boundary term (35) which we rewrite here for convenience

$$
\begin{equation*}
\frac{\partial F}{\partial u_{1}^{\prime}} \delta u_{1}+\ldots+\left.\frac{\partial F}{\partial u_{n}^{\prime}} \delta u_{n}\right|_{x=a} ^{x=b}=0 \tag{39}
\end{equation*}
$$

If all variations $\delta u_{i}(a), \delta u_{i}(b)$ are free, it produces $2 n$ boundary conditions

$$
\frac{\partial F}{\partial u_{i}^{\prime}}=0, \quad x=a \text { and } x=b
$$

for Euler equations (34). In the opposite case, when the values of all minimizers are prescribed at the end points,

$$
u_{i}(a)=u_{i}^{a}, \quad u_{i}(b)=u_{i}^{b}, i=1, \ldots, n
$$

then the equation (39) is satisfied, because all variations are zero.

$$
\delta u_{i}(a)=0, \quad \delta u_{i}(b)=0, \quad i=1, \ldots, n
$$

If the values of several components of $u(a)$ or $u(b)$ are not given, the variations of these components are free and the corresponding natural boundary condition supplements the boundary conditions: For each $i=1, \ldots, n$ one of the two conditions holds

$$
\begin{equation*}
\text { Either }\left.\frac{\partial F}{\partial u_{i}^{\prime}}\right|_{x=a, b}=0 \quad \text { or }\left.\delta u_{i}\right|_{x=a, b}=0 . \tag{40}
\end{equation*}
$$

The total number of the conditions at each endpoint is n. The missing main boundary conditions are supplemented by the natural conditions that express the optimality of the trajectory. This number agrees with the number of boundary conditions needed to solve the boundary value problem for Euler equation.

In a general case, p relations $(p<2 n)$ between boundary values of u are prescribed,

$$
\begin{equation*}
\beta_{k}\left(u_{1}(a), \ldots, u_{n}(a), u_{1}(b), \ldots, u_{n}(b),\right)=0 \tag{41}
\end{equation*}
$$

at the end points $x=a$ and $x=b$. In this case, we need to find $2 n-p$ supplementary variational constraints at these points that together with (41) give $2 n$ boundary conditions for the Euler equation (35) of the order $2 n$.

The conditions (41) are satisfied at all perturbed trajectories,

$$
\beta_{k}(w+\delta w)=0
$$

where $2 n$ dimensional vector w is the direct sum of $u(a)$ and $u(b)$ defined as:

$$
\begin{array}{ll}
w_{k}=u_{k}(a) & \text { if } k=1, \ldots, n \\
w_{k}=u_{k-n}(b) & \text { if } k=n+1, \ldots, 2 n .
\end{array}
$$

The variation δw_{i} is constraint by a linear system

$$
{\frac{\partial \beta_{k}}{\partial w}}^{T} \delta w=0, \quad k=1, \ldots, p
$$

which shows that the constraints (41) are satisfied at the varied trajectory. A matrix form of these conditions is

$$
P \delta w=0
$$

where

$$
P=\left(\begin{array}{ccc}
\frac{\partial \beta_{1}}{\partial u_{1}} & \ldots & \frac{\partial \beta_{1}}{\partial u_{n}} \\
\overleftrightarrow{\partial \beta_{p}} & \cdots & \overleftrightarrow{\partial \beta_{p}} \\
\frac{\beta_{p}}{\partial u_{1}} & \cdots & \frac{1}{\partial u_{n}}
\end{array}\right)
$$

and we may also assume that these conditions are linearly independent. Then the solution to the system is a vector $\delta w_{\text {ad }}$ of the form

$$
\delta w_{\mathrm{ad}}=Q v
$$

where v is an arbitrary $(2 n-p)$-dimensional arbitrary vector and $(2 n-p) \times n$ matrix Q is a supplement (orthogonal matrix) to P that is defined as a solution to the matrix equation $P Q=0$ which leads to $P \delta w_{\mathrm{ad}}=P Q \delta v=0$ for any v.

Any admissible variation $\delta w_{\text {ad }}$ makes the fist variation (36) of the objective functional vanish; correspondingly, we have

$$
\left(\frac{\partial F}{\partial u^{\prime}}\right)^{T} \delta w_{\mathrm{ad}}=0
$$

Using the representation of δw_{ad} and the arbitrariness of the potentials v, we conclude that the fist variation vanishes is the coefficient by each of these potentials is zero or

$$
\begin{equation*}
\left(\frac{\partial F}{\partial u^{\prime}}\right)^{T} Q=0 \tag{42}
\end{equation*}
$$

This representation provides the $2 n-p$ missing boundary conditions.
Example 5.2 Consider again the variational problem with the Lagrangian (37) assuming that the following boundary conditions are prescribed

$$
u_{1}(a)=1, \quad \beta\left(u_{1}(b), u_{2}(b)\right)=u_{1}^{2}(b)+u_{2}^{2}(b)=1
$$

Find the complementary variational boundary conditions. At the point $x=a$, the variation δu_{1} is zero, and δu_{2} is arbitrary. The variational condition is

$$
\left.\frac{\partial F}{\partial u_{2}^{\prime}}\right|_{x=a}=u_{2}^{\prime}(a)-u_{1}(a)=0
$$

Since the condition $u_{1}(a)=1$ is prescribed, it becomes

$$
u_{2}^{\prime}(a)=1
$$

At the point $x=b$, the variations δu_{1} and δu_{2} are connected by the relation

$$
\frac{\partial \beta}{\partial u_{1}} \delta u_{1}+\frac{\partial \beta}{\partial u_{2}} \delta u_{2}=2 u_{1} \delta u_{1}+2 u_{2} \delta u_{2}=0
$$

which implies the representation ($\delta u=Q \delta v$)

$$
\delta u_{1}=-u_{2} \delta v, \quad \delta u_{2}=u_{1} \delta v
$$

where δv is an arbitrary scalar. The variational condition at $x=b$ becomes

$$
\left(-\frac{\partial F}{\partial u_{1}^{\prime}} u_{2}+\frac{\partial F}{\partial u_{2}^{\prime}} u_{1}\right)_{x=b} \delta v=\left(-u_{1}^{\prime} u_{2}+\left(u_{2}^{\prime}-u_{1}\right) u_{1}\right)_{x=b} \delta v=0 \quad \forall \delta v
$$

or

$$
-u_{1}^{\prime} u_{2}+u_{1} u_{2}^{\prime}-\left.u_{1}^{2}\right|_{x=b}=0
$$

We end up with four boundary conditions:

$$
\begin{array}{ll}
u_{1}(a)=1, & u_{1}^{2}(b)+u_{2}^{2}(b)=1 \\
u_{2}^{\prime}(a)=1, & u_{1}(b) u_{2}^{\prime}(b)-u_{1}(b)^{\prime} u_{2}(b)-u_{1}(b)^{2}=0 .
\end{array}
$$

The second raw conditions are variational, they are obtained from the minimization requirement.

Periodic boundary conditions Consider a variational problem with periodic boundary conditions $u(a)=u(b)$. The variational boundary conditions are

$$
\left.\frac{\partial F}{\partial u^{\prime}}\right|_{x=a}=\left.\frac{\partial F}{\partial u^{\prime}}\right|_{x=b}
$$

They are obtained from the expression (39) and equalities $\delta u(a)=\delta u(b)$.

