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1 Weak second variation

1.1 Formulas for variation

We develop the approach for the simplest variational problem (??) with the
scaler minimizer; the generalization to the vector case is straightforward. For
convenience, rewrite this problem

min
u:u∂Ω=u0

I(u), I(u) =

∫
Ω

F (x, u,∇u)dx (1)

Suppose that the variational problem (1) has a stationary solution u that satis-
fies the Euler equation (??). Similarly to the one-dimensional case (see Section
??) we will compare the stationary solution with close-by admissible functions.
The smallness of the perturbation of the solution permits development of veri-
fiable necessary and sufficient conditions for a local minimum.

Consider a perturbed solution up = u + δu assuming that the perturbation
δu is small in the sense that

‖δu‖H1
0 (Ω) < ε, ‖z‖H1

0 (Ω) =
1

2

∫
Ω

(
z2 + (∇z)2

)
dx, z = 0 on ∂Ω. (2)

Here ε is an infinitesimal positive number. The increment ∆I of the objective
functional is

∆I(δu) =

∫
Ω

[F (x, u+ δu,∇(u+ δu))− F (x, u,∇u)]dx

and the variation is zero on the boundary, δu = 0 on ∂Ω, because the value
of u is prescribed there. Because of smallness of δu, we expand the perturbed
Lagrangian into Taylor series, keeping the linear and quadratic terms of the
variation δu of the stationary solution u and neglecting the higher-order terms.
For convenience, we will use the notation v = δu and ∇v = ∇δu. We obtain

∆I(v) = δ1I + δ2I + o
(
||v||2, ||∇v||2

)
where v|∂Ω = 0,

δ1I(u, v) =

∫
Ω

(
∂F

∂u
v +

∂F

∂∇u
∇v
)
dx,

δ2I(u, v) =

∫
Ω

(
∇vT ·A(u)∇v + 2vB(u) · ∇v + vC(u)v

)
dx, (3)

and

A(u) =
∂2F

∂∇u2
, B(u) =

∂2F

∂u∂∇u
C(u) =

∂2F

∂u2
. (4)

All the partial derivatives are calculated at the stationary solution u(x). The
linear in v = δu term δ1I vanishes if the solution u satisfies Euler equation. For
the variations with a small enough H1

0 norm (see (2)), the sign of the increment
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∆I is determined by the sign of the second variation δ2I. The variational
problem

min
v:v=0 on ∂Ω

δ2I(v) (5)

for the second variation is a homogeneous quadratic variational problem for the
variations δu = v. The tested stationary solution u is considered as a known
nonvariable (frozen) function.

1.2 Sufficient condition for weak minimum

We establish the sufficient condition for the weak minimum. Is guarantees that
there is no other solutions utrial that are close to u, ‖u − utrial‖H1

0
≤ ε and

that delivers a smaller value of the objective. If the problem (3) for the second
variation has only trivial minimizer, v = δu = 0, the sufficient test is satisfied
and the stationary solution corresponds to a weak minimum of the objective
functional. The problem (5) has a trivial solution if the quadratic form of the
coefficients of variation (see (3) is positively defined:

∆ =

(
A B
BT C

)
> 0 (6)

Here, ∆ is a block matrix. It consists of the scalar entry C, a d×d matrix entry
A and d× 1 and 1× d vector entries B and BT , respectively.

As in the one-variable case, the sufficient condition simplifies the problem by
treating v and ∇v as independent entries neglecting the bond between them. As
a result, ∇v is treated as a free vector not bounded by the differential constraints
∇× (∇v) = 0 of integrability. Thus, we end up at the theorem:

Theorem 1.1 (Sufficient condition for local minimum) If the matrix

V2 =

(
A(u) B(u)
BT (u) C(u)

)
is nonnegative at a stationary solution u(x) in each point of Ω, then u is the local
minimum of the objective.

Indeed, the condition of the theorem states that

δ2I(u, v) =

∫
Ω

(v,∇v)V2(v,∇v)T dx > 0

for all variations v that satisfy the boundary condition v = 0 on ∂Ω and are not
identically zero. Therefore there is no close-by function ū, that corresponds to
lower value of the objective, or the stationary solution u corresponds to the local
minimum of the objective. Notice how the locality of the minimum simplifies
the test: The Lagrangian becomes quadratic and the Euler equation becomes
linear.
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Remark 1.1 Besides the smallness of the variation, this sufficient condition uses
another rough simplification. It is assumed in the derivation that the variation v
and its derivative ∇v are independent on each other, therefore the call of variations
is enlarged.

Example 1.1 (Second variation) Compute the second variation for the Lp pe-
nalized approximation problem (see Section ??) that corresponds to the Lagrangian.

L = α|∇u|p +
1

2
(u− f)2

The variational problem for the second variation becomes

min
v

∫
Ω

(
1

2
∇vTA(∇u)∇v + v2

)
dx, v = 0 on ∂Ω (7)

where A is defined in (4) and u is the stationary solution to the approximation
problem in Example ??. Compute the coefficients (4) in the expression (??) for the
second variation:

C =
∂2L

∂u2
= 1, B =

∂2L

∂u∂g
= 0

Here, we denote for convenience g = ∇u; g is d-dimensional vector. Compute A:

A = A(g) = α
∂2L

∂g2
= p|g|p−4

[
(p− 2)g gT + (gT g)I

]
(8)

where I is the unit matrix, or

Aij = p|g|p−4 [(p− 2) + δij ] gigj

where δij is the Kronecker delta.
The second variation is positive is A is positively defined. Compute the eigen-

values and eigenvectors of A. The eigenvalues are

λ1 = p(p− 1)|g|p−2, λ2 = λ3 = p(p− 2)|g|p−2

and the eigenvectors are

a1 = (g1, g2, g3), a2 = (0,−g3, g2) , a3 =

(
−g

2
2 + g2

3

g1g3
,
q2g3

g1
, g3

)
We observe that A is nonnegative if λ2 and λ3 are nonnegative that is if p > 2.

Notice that in the one-dimensional problem, x ∈ R1, g = (g1, 0, 0) only one
eigenvalue λ1 remains, and the nonnegativity condition are weaker, namely p > 1.
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2 Jacobi-type necessary conditions

2.1 Jacobi condition

In this and next Section, we study necessary conditions for the weak minimum.
Those are obtained by specifying the form of the second variations. It is as-
sumed that the sufficient condition for the weak minimum is not satisfied, and
the stationarity might not correspond to the local minimum. The necessary
condition are design to disprove the assumption that the stationarity delivers
a local minimum. The perturbations of the solutions are introduced and it is
checked if these perturbations can decrease the stationary value of the objective
functional.

Jacobi test The scheme of Jacobi test remains the same for one- and mul-
tivariable case. It tests the stationary solution u(x) which is considered as a
known function. Consider the problem (5), (3) freezing u(x) and treating v = δu
as a minimizer. The original problem is simplified when the variation v is chosen
that vanishes outside of a domain Ω0 ⊂ Ω. It is assumed that Ω0 is a ”simple”
domain and therefore the solution is easier to analyze. The Jacobi condition
points to the “most dangerous” variation in Ω0. To find such variation, one
needs to solve the Euler equation for the minimizing variation v,

∇ ·A∇v + (∇ ·B − C)v = 0 in Ω0 ⊂ Ω, v = 0 on ∂Ω0. (9)

If this equation has a nontrivial solution v 6= 0, the variation exists that improves
the stationary solution. Summing up, we arrive at the theorem

Theorem 2.1 (Jacobi condition) Every stationary solution u to the problem
(5) satisfies the Jacobi necessary condition: The problem (9) has only trivial solution
v = 0 in any subdomain Ω0 of Ω. Otherwise an improving variation v exist and the
stationary solution u does not corresponds to the minimum of the objective.

Practically, one can try to disprove the optimality of the minimizer by con-
sidering equation (9) in a canonic domain Ω0 ⊂ Ω, such as a circle, ellipse,
rectangle, or even torus. The problem for the second variation δ2IJ(v) still has
the form (3) but the integration is performed over Ω0 instrad of Ω.

δ2IJ(v) =

∫
Ω0

(
∇vT ·A(u)∇v + 2vB(u) · ∇v + vC(u)v

)
dx, (10)

Unlike the one-dimensional case, the Jacobi condition for the multivariable vari-
ational problems includes the nontrivial choice of the domain of the variation.
The choice of the domain is characteristic for several multidimensional varia-
tional techniques.

Example 2.1 Consider the problem in a two-dimensional domain Ω ⊂ R2

J = min
u

∫
Ω

(
1

2
(∇u)2 − c2

2
u2

)
dx, u = u0 on ∂Ω
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We prove

Theorem 2.2 The stationary solution

u(x) : ∇2u+ c2u = 0 in Ω, u = u0 on ∂Ω

does not correspond to the minimum of J if the domain Ω contains either
(i) a rectangle Ω0(α, β) with the sides α and β, such that

1

α2
+

1

β2
=
c2

π2
(11)

or
(ii) a circle Ω00 of the radius ρ

c , where ρ = 2.404825.. is the minimal positive
root of the Bessel equation J0(ρ) = 0.

First, derive the equation (9) for the second variation of Lagrangian. It has the
form

∇2v + c2v = 0 in Ω0, v = 0 on ∂Ω0 (12)

Here, A = 1, B = 0, C = 1. Notice, that this equation coincides with the sta-
tionary condition, but unlike the stationarity, it satisfies the homogeneous boundary
condition at the chosen contour.

Proof of the condition (i) One may choose Ω0 to be a rectangle with the
unknown sides α and β and the improving variation v(x1, x2) to be function of the
both coordinates that vanishes if x = ±α2 or if y = ±β2 . The equation (12) in a

rectangle |x| ≤ φ
2 , y ≤ β

2 has the form

∂2v

∂x2
1

+
∂2v

∂x2
2

+ c2v = 0, u = 0 if either |x| = φ

2
, or |y| = β

2
,

it permits the separation of variables, and has the solution

vαβ = cos
(πx1

α

)
cos

(
πx2

β

)
, where

1

α2
+

1

β2
=
c2

π2
(13)

Substituting v = vαβ into (10) and computing the second variation

δ2IJ(v) =
1

αβ

(
π(α2 + α2)− c2α2β2

)
(14)

one easily checks that δ2IJ(v) = 0 if the rectangle with the sides (11) is contained
in Ω.

Proof of the condition (ii) One can also build a nonpositive second variation
in a larger rectangular α′ × β′ if α′ > α and/or β′ > β. The variation vα′β′ has
the form (13). One checks by the direct calculation using (14) that this variation
corresponds to the negative second variation.
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One may also choose Ω0 to be a circle with the unknown radius ρ, and the
improving variation v to be function only of the radius, v = v(r). The equation
(12) becomes an ordinary differential equation

1

r

d

dr
r
dv

dr
+ c2v = 0, v(ρ) = 0, v(r) is bounded if 0 ≤ r ≤ ρ

The general solution that is bounded at r = 0 is v = CJ0(c r). It satisfies the
boundary condition v(r0) = 0 inside the circle of the radius ρ, if c ρ is larger
than the minimal positive root of the Bessel equation J0(c ρ) = 0 which gives
ρ > 2.404825/c. By the Jacobi condition, if the domain Ω contains a circle of this
radius, the cost of the stationary solution (which is unique for this problem) can be
improved; therefore the stationary solution does not correspond to a minimum of
the objective.

2.2 Simplified nonlocal variation

Lagrangians of more general form result in the quadratic problem for the second
variation with variable coefficients. This time, it is more difficult to find the
exact solution to the problem (9). However, it may be still possible to find an
improving variation assigning its type and estimating the second variation, in
addition to the assigning of the subdomain Ω0

Example 2.2 Consider the problem with the Lagrangian

L = κ(x)(∇u)2 − c2(x)u2

where
0 < κ(x) ≤ κ+ and c(x) ≥ c− ≥ 0

are bounded variable coefficients, which dependence on x might be unknown. The
second variation is

δ2I(v) =

∫
Ω

(κ(x)(∇v)2 − c2(x)v2)dx

where v is a variation. The Jacobi condition asks for the nontrivial solution to the
partial differential equation

∇ · κ(x)∇v + c(x)v = 0, v = 0 on ∂Ω0

which is usually impossible to obtain in a closed analytic form. Instead, we may
assign the form of the variation v. For example, let v be as follows

v = (x2
1 − a2)(x2

2 − b2), if (x1, x2) ∈ Ω0, v = 0 otherwise

where Ω0(a, b) is a rectangle

Ω0(a, b) = {(x1, x2) : |x1| ≤ a, |x2| ≤ b},
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and a and b are two positive parameters. This variation vanishes at the boundary
of Ω0 that is if x = ±a or y = ±b. Assume also that Ω0 ⊂ Ω. The expression for
the second variation becomes an explicit function of κ and c

δ2I(v) =

∫
Ω0

(
4κ(x)

[
x2

1(x2
2 − b2)2 + x2

2(x2
1 − a2)2

]
−c2(x)(x2

1 − a2)2(x2
2 − b2)2

)
dx

If the sign of the second variation is negative, the stationary condition does not
correspond the minimum.

Even if the functions κ(x) and c(x) are unknown, we may bound the expression
of δ2I from above, replacing κ(x) with κ+ and c(x) with c− and computing the
integrals. We obtain

δ2I(v) ≤ 128

225
a5b5

[
5κ+

(
1

a2
+

1

b2

)
− 2c2−

]
If this upper estimate is nonpositive, the so is the second variation. We conclude that
the stationary solution does not correspond to minimum, if Ω contains a rectangle
Ω0(a, b) such that

1

a2
+

1

b2
≤ 2

5

c2−
κ+

Notice that the obtained condition is not the most restrictive, but it is simple enough
to use.

3 Weierstrass-type Test

3.1 Localized variations

Convexity of Lagrangians and Stability of Solutions We have shown in
Chapter ?? that a solution to a one-dimensional variational problem is stable
against fine-scale perturbations if its Lagrangian is convex. The lack of convexity
of the Lagrangian leads to the appearance of rapidly alternating functions in
the optimal solution. Here we develop a similar approach for multidimensional
variational problems.

Strong Local Variations Weierstrass Type The Weierstrass-type condi-
tion checks that a sharp localized perturbation of the extremal does not decrease
the functional. Failure to satisfy the Weierstrass test proves that the checked
stationary solution is not optimal because it can be improved by adding an
oscillatory component to it. We define the local strong perturbation (or the
strong local variation or Weierstrass variation) as follows.

Definition 3.1 By a strong local variation (Weierstrass-type variation) of a mul-
tidimensional variational problem we understand a localized perturbation δu of the
potential u that
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1. is differentiable almost everywhere,

2. has an arbitrarily small magnitude |δu| < ε;

3. has a finite magnitude of the gradient |∇u| = O(1); and

4. is localized in a small neighborhood ωε(x0) of an inner point x0 in the domain
Ω: δu(x) = 0 ∀ x 6∈ ωε(x0), where ωε(x0) is a domain in Ω with the following
properties: x0 ∈ ωε(x0), diam(ωε)→ 0 as ε→ 0.

Shape of variation domain There is a freedom in choosing the type of
Weierstrass variation in a multidimensional problem. First, we choose the shape
of ωε. It is important that δw is continuous and vanishes on the boundary ∂ωε
of ωε. For example, we may choose ωε as a circular domain and consider the
trial perturbation δw shaped like a cone, or a symmetric paraboloid. For a
polygonal domain ωε the variation δw can be shaped like a pyramid.

The increment of the functional due to this variation is of the order of the
size of the domain of variation ωε. The main term of the increment depends on
the perturbation ∇u is the Lagrangian is Lipschitz with respect to u and x and
coercive with respect to ∇u (which we will assume from now),

F (x, u+ δu,∇(u+ δu)) = F (x0, u,∇u+ δv)) + o(ε), u = u(x0), ∀x ∈ ωε

where x0 is the coordinate of the center of ωε,

δIW (ωε) =

∫
ωε

[F (x0, u,∇u+∇v)− F (x0, u,∇u)] dx+ o‖ωε‖, (15)

Notice that the only variable in ωε argument is ∇v, but the slow variable u is
”frozen” to be equal to be the values of the checked stationary solution. The
independent variable x is replaced by x0 without change in the main term of
the increment. The integral of ∇v over ωε is zero,∫

ωε

∇v dx = V ⊗
∫
ωε

∇s dx = 0 (16)

Consider δu in a shape of a truncated pyramid (a frustum) with m sides Bi
with normals ni The gradient of variation is

∇(δu) =

 0 if u ∈ out of the pyramid
cini if u ∈ Bi
0 if u ∈ in the truncated center region of the pyramid

(17)

The resulting necessary condition depends on the chosen shape of the vari-
ation. We will call the corresponding inequalities the necessary conditions of
Weierstrass type or the Weierstrass conditions. The Weierstrass condition de-
pends on magnitude of the variation as well as on the shape of the domain
ωε.
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3.2 Rank-One Convexity

Variation in a symmetric cone or strip The variation (??) can be sim-
plified when ad additional assumption of the symmetry of ωε is made. Assume
that its boundary b(φ) is symmetric to the rotation on 180◦, b(φ) = b(φ+180◦).
Then P (φ) = −P (φ+ 180◦). The variation (??) becomes

δIW (ωε) =
1

2

∫ π

0

DI(φ)b2(φ)dφ (18)

where

DI(φ) = F (u,∇u+ V ⊗ P (φ)) + F (u,∇u− V ⊗ P (φ))− 2F (u,∇u) (19)

The necessary condition (15) is satisfied is

DI(φ) ≥ 0 ∀φ ∈ [0, P i). (20)

Notice that the last condition is equivalent to the convexity of F (u,∇u) in the
“direction” V ⊗ P . This “direction” is an arbitrary n × 2 dyad because both
vectors V and P are arbitrary.

Variation in the parallel strips The opposite type of variation corresponds
to the extremely elongated rectangular domain Sε of the size (ε, ε2) that consists
of several thin strips parallel to the longer side. The variation of the potential
depends on the normal n to the strips everywhere except in the end domains Sε2
of the size ε4 = ε2 × ε2 at the ends of the strips where it monotonically decays
to zero. Assume that the potential is piece-wise linear continuous function of n.
Its magnitude is of the order ε2 of the thickness ck of the layers. The gradient
∇v, is a piece-wise constant vector function with the values Vk of the finite
magnitude everywhere except of the end domains Sε2 where it is bounded. The
contribution of these domains is arbitrary small comparing with the contribution
of the much larger middle section Sε − Sε2 of the domain.

The main term in the increment comes from the variation the middle part of
the strip. Here, the gradient ∇vi = νi(n)n of each potential vi is directed along
the normal n to the strips. Function ν is piece-wise constant and takes a constant
value Vki in each strip. The variation of the vector potential v = {v1, . . . , vn}
has the form

∇v(n) = V (n)⊗ n, in Sε − Sε2

where V (n) is a piece-wise constant function with the values Vk = (vk1, . . . , vkn
in the kth strip.

The perturbation of the potential v is zero outside of the ωε and is continuous
inside the domain; this leads to the constraint on the magnitudes Vk∑

k

ckVk = 0,
∑
k

ck = 1, ck ≥ 0 (21)

here ck is the relative thickness of the kth strip.
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The increment ∆I of the cost of the variational problem (17) due to the
variation in the strip is

∆I =
∑
k

ckF (u,∇u+ Vk ⊗ n)− F (u,∇u) (22)

Solution u is stable to the perturbation in a strip if

∆I > 0 ∀, Vk, ck as in (21) , ∀n

Rank-One convexity The condition (??) states that the Lagrangian αF (x,w,A)
is convex with respect to some special trial matrices of the type R = α⊗n but
not with respect to arbitrary matrices. The corresponding property is called
the rank-one convexity.

Definition 3.2 The scalar function F of an n ×m matrix argument A is called
rank-one convex at a point A0 if

F (A0) ≤
N∑
i=1

αiF (A0 + αiξiR) (23)

for any αi, ξi, R, N that

N∑
i=1

αi = 1, αi ≥ 0,

N∑
i=1

αiξi = 0, R = a⊗ b.

Here a and b are n-dimensional and m-dimensional vectors, respectively, and αi
are scalars.

Rank-one convexity requires convexity in some matrix “directions,” namely, in
the “directions” of the rank-one matrices. Obviously, the usual convexity implies
rank-one convexity.

There are two cases in which rank-one convexity coincides with convexity:

1. The Lagrangian depends on one independent variable: x is a scalar.

2. The Lagrangian depends on one dependent variable: w is a scalar.

In both cases, the matrix A0 = ∇w degenerates into a rank-one matrix.

Example 3.1 (Non-convex but rank-one convex function) LetA be a 2×
2 matrix and F (A) be

F (A) = [ Tr (A)]2 + 2C detA (24)

We show that F (A) is nonconvex, if C 6= 0, but it is rank-one convex for all real C.
Indeed, F is a quadratic form, F (A) = ATvM Av, of the elements of A that form
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the four-dimensional vector Av = (a11, a22, a12, a21). Matrix M of this form is

M =


1 1 + C 0 0

1 + C 1 0 0
0 0 0 −C
0 0 −C 0


Its eigenvalues are C,C + 2,±C. At least one of the eigenvalues is negative if
C 6= 0, which proves that F (A) is not convex.

Compute the rank-one perturbation of F . We check by the direct calculation
that ∑

k

ck det (A+ αkd⊗ b) = detA,

if ∑
k

ckαk = 0 (25)

Indeed, all quadratic in the elements of d⊗ b terms in the left-hand side cancel, and
the linear terms sum to zero because of (25). We also have(∑

k

ck TrF (A+ αkd⊗ b)

)2

= ( TrA)2 +

(∑
k

ckαk Tr (d⊗ b)

)2

(linear in d⊗ b terms cancel because of (25)).
Substituting these two equalities into F in (24), we find that

∑
k

ckF (A+ αkd⊗ b) = F (A) +

(∑
k

ck Tr (αkd⊗ b)

)2

if if (25) holds. The variation is independent of the value of C. The inequality (23)
follows; therefore F is rank-one convex.

Stability of the stationary solution The rank-one convexity of the La-
grangian is a necessary condition for the stability of the minimizer. If this con-
dition is violated on a tested solution, then the special fine-scale perturbations
(like the one described earlier) improve the cost; hence the classical solution is
not optimal.

Theorem 3.1 (Stability to Weierstrass-type variation in a strip) Every
stationary solution that corresponds to minimum of the functional (??) corresponds
to rank-one convex Lagrangian. Otherwise the stationary solution u can be improved
by adding a perturbation in a strip to the solution.

Remark 3.1 Rank-one trial perturbation is consistent with the classical form
L(x,w,∇w) of Lagrangian. This form implies the special differential constraints
∇× (v) = 0 that require the continuity of all but one component of the field ∇w.
The definition of this necessary condition for the stability of the solution can be
obviously generalized to the case where the differential constraints are given by the
tensor A.
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3.3 Legendre-type condition

A particular case of the Weierstrass-type condition is especially easy to check.
If we assume in addition that the magnitude V of the variation is infinitesimal,
the rank-one condition becomes the requirement of positivity of the second
derivative in a rank-one ”direction”
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