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This part deals with multivariable variational problems that describe equi-
libria and dynamics of continua, optimization of shapes, etc. We consideration
of a multivariable domain x ∈ Ω ⊂ Rd and coordinates x = (x1, . . . , xd). The
variational problem requires minimization of an integral over Ω of a Lagrangian
L(x, u,Du) where u = u(x) is a multivariable vector function and ∇u of mini-
mizers and matrix Du = ∇u of gradients of these minimizers.

The optimality conditions for these problems include differentiation with
respect to vectors and matrices. First, we recall several formulas of vector
(multivariable) calculus which will be commonly used in the following chapters.

1 Reminder of multivariable calculus

1.1 Vector differentiation

We remind the definition of vector derivative or derivative of a scalar function
with respect to a vector argument a ∈ Rn.

Definition 1.1 If φ(a) is a scalar function of a column vector argument a =
(a1, . . . , an)T , then the derivative dφ

da is a row vector

dφ

da
=

(
dφ

da1
, . . . ,

dφ

dan

)
if a =

 a1

. . .
an

 (1)

assuming that all partial derivatives exist.

This definition comes from consideration of the differential dφ of φ(a):

dφ(a) = φ(a+ da)− φ(a) =
dφ(a)

da
· da+ o(‖a‖)

Indeed, the left-hand side is a scalar and the second multiplier in the right-hand
side is a column vector, therefore the first multiplier is a row vector defined in
(1)

Examples of vector differentiation The next examples show the calcula-
tion of derivative for several often used functions. The results can be checked
by straightforward calculations. We assume here that a ∈ Rn.

1. If φ(a) = |a|2 = a2
1 + . . . a2

n, the derivative is

d

da
|a|2 = 2aT

2. The vector derivative of the euclidean norm |a| of a nonzero vector a is a
row vector b,

b =
d

da

√
|a|2 =

aT√
|a|2

=
aT

|a|
Observe that b is codirected with a and has unit length.
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3. The derivative of a scalar product c ·a, where c is an n-dimensional vector,
c ∈ Rn, is equal to c:

d

da
cTa = c

Similarly, if C is a k × n matrix, derivative of a product Ca equals CT ,

d

da
Ca = CT

4. Derivative of a quadratic form aTCa where C is a symmetric matrix,
equals

d

da
aTCa = 2aTC = 2(Ca)T .

Directional derivative Let φν be a directional derivative of a scalar function
φ in a direction ν: φν = ∇φ · ν. Partial derivative of F (∇φ) with respect to φν
is defined as:

∂F

∂φν
=

∂F

∂∇φ
· ν (2)

Gradient of a vector If u = (u1, . . . , un) is a vector function, uj = uj(x1, . . . xd),
x ∈ Rd, then the gradient of u is defined as a d× n matrix denoted ∇u or Du,
∇u =

∂uj
∂xi

, or, in elements,

∇u = Du =

 ∂u1

∂x1

∂u2

∂x1
. . . ∂un

∂x1

. . . . . . . . . . . .
∂u1

∂xd
∂u2

∂xd
. . . ∂un

∂xd

 = (∇u1|∇u2|...|∇un) (3)

The columns of this matrix are gradients of the components of the vector func-
tion u.

1.2 Matrix differentiation

Similarly to the vector differentiation we define matrix differentiation consider-
ing a scalar function φ(A) of a matrix argument A. As in the vector case, the
definition is based on the notion of scalar product.

Definition 1.2 The scalar product a.k.a. the convolution of the n×m matrix A
and m× n matrix B is defined as following

A : B =

n∑
i=1

m∑
j=1

aijbji.

One can check the formula

A : B = Tr (AB) (4)
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that brings the convolution into the family of familiar matrix operations.
The convolution allows us to for calculate the increment of a matrix-differentiable

function of a matrix argument caused by variation of this argument:

dφ(A) = φ(A+ dA)− φ(A) =
dφ(A)

dA
: dA+ o(‖dA‖).

and to give the definition of the matrix-derivative.

Definition 1.3 The derivative of a scalar function φ by an n×m matrix argument
A is an m× n matrix D = dφ

dA with elements

Dij =
∂φ

∂aji

where aij is the ij-element of A.

In element form, the definition becomes

dφ

dA
=

 ∂φ
∂a11

∂φ
∂a21

. . . ∂φ
∂am1

. . . . . . . . . . . .
∂φ
∂a1n

∂φ
∂a2n

. . . ∂φ
∂amn

 (5)

Examples of matrix differentiation Next examples show the derivatives
of several often used functions of matrix argument.

1. As the first example, consider φ(A) = TrA =
∑n
i=1 aii. Obviously,

dφ

daij
=

{
1 if i = j
0 if i 6= j

,

therefore the derivative of the trace is the unit matrix,

d

dA
TrA = I.

2. Using definition of the derivative, we easily compute the derivative of the
scalar product or convolution of two matrices,

d(A : B)

dA
=

d

dA
Tr (ABT ) = B.

3. Assume that A is a square n× n matrix. The derivative of the quadratic
form xTAx =

∑n
i,j=1 xixjaij with respect to matrix A is an n × n dyad

matrix
d(xTAx)

dA
= xxT

4



4. Compute the derivative of the determinant of matrix A for A ∈ Rn×n.
Notice that the determinant linearly depends on each matrix element,

detA = aijMij + constant(aij)

where Mij is the minor of the matrix A obtained by eliminating the ith
row and the jth column; it is independent of aij . Therefore,

∂detA

∂aij
= Mij

and the derivative of detA is the matrix M of minors of A,

d

dA
detA = M =

M11 . . . M1n

. . . . . . . . .
Mn1 . . . Mnn


Recall that the inverse matrix A−1 can be conveniently expressed through
these minors as A−1 = 1

detAM , and rewrite the result as

d

dA
detA = (detA)A−1

We can rewrite the result once more using the logarithmic derivative
d
dx log f(x) = f ′(x)

f(x) . The derivative becomes more symmetric,

d

dA
(log detA) = A−1.

Remark 1.1 If A is symmetric and positively defined, we can bring the
result to a perfectly symmetric form

d

dlogA
(log detA) = I

Indeed, we introduce the matrix logarithmic derivative similarly to the loga-
rithmic derivative of a real positive argument,

df

dlog x
= x

df

dx
,

which reads
df

dlogA
= A

df

dA
.

Here, logA is the matrix that has the same eigenvectors as A and the eigen-
values equal to logarithms of the corresponding eigenvalues of A. Notice that
log detA is the sum of logarithms of the eigenvalues of A,

log detA = Tr logA

. Notice also that when the matrix A is symmetric and positively defined
which means that the eigenvalues of A are real and positive, the logarithms
of the eigenvalues are real.
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5. Using the chain rule, we compute the derivative of the trace of the inverse
matrix:

d

dA
TrA−1 = −A−2.

6. Similarly, we compute the derivative of the quadratic form associated with
the inverse matrix:

d

dA
xTA−1x = −xA−2xT .

Remark 1.2 (About the notations) The historical Leibnitz notation g = ∂f
∂z

for partial derivative is not the most convenient one and can even be ambiguous.
Indeed, the often used in one-variable variational problems partial ∂f

∂u′ becomes in

multivariable problem the partial of the partials ∂u
∂x . Since there is no conventional

analog for the symbol ′ in partial derivatives, we need a convenient way to express
the fact that the argument z of differentiation can itself be a partial derivative like
z = ∂u1

∂x2
. If we were substitute this expression for z into ∂f

∂z , we would arrive at an
a bit awkward expression

g =
∂f

∂ ∂u1

∂x2

(still used in Gelfand & Fomin) which replaces the expression ∂f
∂u′ used in one-

variable variational problem.
There are several ways to fix the inconvenience. To keep analogy with the one-

variable case, we use the vector of partials ∂f
∂(∇u) in the place of ∂F

∂u′ . If needed, we

specify a component of this vector, as follows

g =

[
∂f

∂(∇u1)

]
2

Alternatively, we could rename the partial derivatives of u with a single indexed
array Dij arriving at the formula of the type

g =
∂f

∂D12
, where D12 =

∂u1

∂x2
.

or use comma to show the derivative

g =
∂f

∂u1,2
, where u1,2 =

∂u1

∂x2
.

The most radical and logical solution (which we do not dare to develop in the
textbook) replaces Leibnitz notation with something more convenient, namely with
Newton-like or Maple-like notation

g = D(f,D(u1, x2))
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Remark 1.3 (Ambiguity in notations) A more serious issue is the possible
ambiguity of partial derivative with respect to one of independent coordinates. The
partial ∂

∂x means the derivative upon the explicitly given argument x of a function
of the type F (x, u). If the argument x is one of the independent coordinates, and if
u is a function of these coordinates, in particular of x (as it is common in calculus of
variations problems), the same partial could mean ∂F

∂x + ∂F
∂u

∂u
∂x . To fix this, we need

to specify whether we consider u as a function of x, u = u(x), or as an independent
argument, which could make the notations awkward.

For this reason, we always assign the symbol x for a vector of independent vari-
ables (coordinates). When differentiation with respect to independent coordinates
is considered, we use the gradient notations as ∇u. Namely, the vector is introduced

∇F (u, x) =

 ∂F
∂x1

..
∂F
∂xd

+

 ∂F
∂u

∂u
∂x1

..
∂F
∂u

∂u
∂xd


where ∂

∂xk
always means the derivative upon explicit variable x. The partials corre-

sponds to components of this vector. If necessary, we specify the argument of the
gradient, as follows ∇ξ.

1.3 Multidimensional integration

Change of variables Consider the integral

I =

∫
Ω

f(x) dx

and assume that x = x(ξ), or in coordinates

xi = xi(ξ1, . . . , ξd), i = 1, . . . , d

In the new coordinates, the domain Ω is mapped into the domain Ωξ and the
volume element dx becomes det J dξ where det J is the Jacobian and J is the
d× d matrix gradient

J = ∇ξx = {Jij}, Jij =
∂xi
∂ξj

, i, j = 1, . . . , d.

The integral I becomes

I =

∫
Ωξ

f(x(ξ))(det∇ξx) dx (6)

The change of variables in the multivariable integrals is analogous to the one-
dimensional case .
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Green’s formula The Green’s formula is a multivariable analog of the Leib-
nitz formula a.k.a. the fundamental theorem of calculus. For a differentiable in
the domain Ω vector-function a(x), it has the form∫

Ω

∇ · a dx =

∫
∂Ω

a · ν ds (7)

Here, ν is the outer normal to Ω and ∇· is the divergence operator,

∇ · a =
∂a1

∂x1
+ . . . ,+

∂an
∂xn

.

If d = 1, domain Ω becomes an interval [c, d], the normal show the direction
along this interval, and (7) becomes∫ d

c

da

dx
dx = a(d)− a(c).

Integration by parts We will use multivariable analogs of the integration
by parts. Suppose that b(x) is a scalar differentiable function in Ω and a(x) is a
vector differentiable field in Ω. Then the following generalization of integration
by parts holds ∫

Ω

(a · ∇b) dx = −
∫

Ω

(b∇ · a) dx+

∫
∂Ω

(a · ν)b ds (8)

The formula follows from the differential identity (differentiation of a product)

a · ∇b+ b∇ · a = ∇ · (ba)

and Green’s formula ∫
Ω

(∇ · c)dx =

∫
∂Ω

(c · ν) ds

A similar formula holds for two differentiable in Ω vector fields a and b:∫
Ω

(a · ∇ × b) dx =

∫
Ω

(b · ∇ × a) dx−
∫
∂Ω

(a× b · ν) ds (9)

It immediately follows from the Green’s formula and the identity

∇ · (a× b) = b · ∇ × a− a · ∇ × b
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