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1 Preliminaries. Existence of classical minimiz-
ers

1.1 Minimizers in finite-dimensional optimal problems

The classical approach to variational problems assumes that the optimal trajec-
tory is a differentiable curve – a solution to the Euler equation that, in addition,
satisfies the Weierstrass and Jacobi tests. In this chapter, we consider the varia-
tional problems which solutions do not satisfy necessary conditions of optimality.
Either the Euler equation does not have solution, or Jacobi or Weierstrass tests
are not satisfied at any stationary solution. If this is a case, the extremal cannot
be found from necessary conditions. We have met such solution in the problem
of minimal surface (Goldschmidt solution, Section ??).

As always, we point to an analogy of irregular solutions in finite-dimensional
minimization problems. Consider such a problem of minimization of a scalar
function F (x) of a vector x ∈ Rn,

min
x∈Rn

F (x).
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The infimum of F may correspond to the regular stationary point where gradient
is zero ∇F (x) = 0 and Hessian ∇2F (x) is positively defined. This case is an
analog of optimality of a stationary solution for which Legandre and Jacobi
conditions safisfied. The infimum may also correspond to an irregular point x
where∇F (x) is not defined (as in the case F (x) = |x|), or its norm is unbounded,
‖∇F (x)‖ → ∞ (as in the case F (x) =

√
|x|), or x can be improper, ‖x‖ → ∞ (as

in the case F (x) = |x|−1); in the last case, a minimizing sequence xn diverges.
In variational problems, the minimizing functions u(x) belong to more com-

plex than Rn sets and and they are bounded by additional requirements of
differentiability. It is natural to expect irregular solutions to those problems
and to meet diverse causes for these irregularities.

Irregular limits of minimizing sequences A minimization problem always
can be solved by a direct method that is by constructing a corresponding min-
imizing sequence, the functions us(t) with the property I(us) ≥ I(us+1). The
functionals I(us) form a monotonic sequence of real number that converges to
a real or improper limit. In this sense, every variational problem can be solved,
but the limiting solution lims→∞ us may be irregular; in other terms, it may
not exist in an assumed set of functions. Especially, derivation of Euler equa-
tion uses an assumption that the minimum is a differentiable function. This
assumption leads to complications because the set of differentiable functions is
open and the limits of sequences of differentiable functions are not necessary
differentiable functions themselves.

We list several types of minimizing sequences that one meets in variational
problems

Example 1.1 (Various limits of functional sequences)

• The sequence of infinitely differentiable function

φn(x) =
n√
π

exp

(
−x

2

n2

)
when n→∞ tends to the δ function, φn(x)→ δ(x), which is not a function
but a distribution. Its value is zero in all point but x = 0 and the integral of
φn(x) over the real axis it is equal to one for all n.

• The limit H(x) of the sequence of antiderivatives of these infinitely differen-
tiable functions is a discontinuous function (Heaviside function)

H(x) =

∫ x

−∞
φn(t)dt =

{
0 if x < 0
1 if x > 1

• The limit of the sequence of oscillating functions

lim
n→∞

sin(nx)

does not exist for any x 6= 0.
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• The sequence

φn(x) =
1√
n

sin(nx)

converges to zero pointwise, but the limit of the sequence of the derivatives
φn(x)′ =

√
n cos(nx) does exist and the sequence is unbounded everywhere.

These or similar functional sequences often represent minimizing sequences in
variational problems. Here we give a brief introduction to several methods
aimed to deal with such ”exotic” solutions, that do not correspond to solutions
of Euler equation.

Regularization and relaxation The possible nonexistence of minimizer poses
several challenging questions. Some criteria are needed to establish which prob-
lems have a classical solution and which do not. These criteria analyze the type
of Lagrangians and result in existence theorems.

There are two alternative ideas in handling problems with nondifferentiable
minimizers. The admissible class of minimizers can be enlarged and closed in
such a way that the ”exotic” limits of minimizers would be included in the
admissible set. This procedure called relaxation and underlined in the Hilbert’s
quotation, has motivated the introduction of theory of distributions and the
corresponding functional spaces, as well as development of relaxation methods.
Below, we consider several ill-posed problems that require rethinking of the
concept of a solution.

Alternatively, the minimization problem can be constrained so that the ”ex-
otic” behavior of the solutions is penalized and the minimizer will avoid it; this
approach is called regularization. It forces the problem to select a classical so-
lution at the expense of increasing the value of the objective functional. When
the penalization decreases, the solution tends to the solution of the original
problem, remaining conventional. An example of this approach is the viscosity
solution developed for dealing with the shock waves.

1.2 Existence of a differentiable minimizer in a variational
problem

We formulate here a list of conditions guarantying the smooth classical solution
to a variational problem.

1. The Lagrangian grows superlinearly with respect to u′:

lim
|u′|→∞

F (x, u, u′)

|u′|
=∞ ∀x, u(x) (1)

This condition forbids any finite jumps of the optimal trajectory u(x); any
such jump leads to an infinite penalty in the problem’s cost.

2. The cost of the problem goes to infinity when |u| → ∞. This condition
forbids a blow-up of the solution.
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3. The Lagrangian is convex with respect to u′:

F (x, u, u′) is a convex function of u′ ∀x, u(x)

at the optimal trajectory u. This condition forbids infinite oscillations
because they would increase the cost of the problem.

Let us outline the idea of the proof:

1. First two conditions guarantee that the limit of any minimizing sequence
is bounded and has a bounded derivative. The cost of the problem goes
to infinity when either the function or its derivative tend to infinity at a
set of nonzero measure.

2. It is possible to extract a weakly convergent subsequence uS ⇁ u0 from
a weakly bounded minimizing sequence. Roughly, this means that the
subsequence uε(x) in a sense approximates a limiting function u0, but
may wiggle around it infinitely often.

3. The convexity of F (., ., u′) ensures that a minimizing sequence is not wig-
gling.

More exactly, we use the property of lower weakly semicontinuity of the
objective functional I(u). The lower weakly semicontinuity states that

lim
uS⇁u0

I(us) ≥ I(u0)

The following examples illustrate the relation between weak limits:

Example 1.2 Consider sequence us = sin(s x); the weak limit of {us} is
zero. sin(s x) ⇁ 0 s→∞, or

lim
s→∞

∫ b

a

ψ(x)us(x)dx = 0 ∀ψ ∈ L1([a, b])

Compute the weak limit of the square of u2(x)

I1(us, ψ) =

∫ 1

0

(us)2ψ(x)dx ∀ψ ∈ L1([a, b])

We have

lim
s→∞

∫ 1

0

sin2(s x)ψ(x)dx =
1

2
lim
s→∞

∫ 1

0

(1−cos(2s x)ψ(x)dx =
1

2

∫ 1

0

ψ(x)dx

and we observe that

lim
weak

u2(x) =
1

2

. Therefore,
lim

uS⇁u0
I1(us) > I(u0) = 0
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The weak limit of the equence (us)4 − (us)2 equals − 1
4 and is smaller than

I2(0),
lim

us⇁u0
I2(us) < I(u0) = 0

The ”wiggling” minimizing sequence us increases the value of the first func-
tional and decrease the value of the second. The fist functional corresponds
to convex integrand and is weakly lower semicontinuous.

The convexity of Lagrangian eliminates the possibility of wiggling, because
the cost of the problem with convex Lagrangian is smaller for a smooth
function than on any close-by wiggling function by virtue of Jensen in-
equality. The functional of a convex Lagrangian is lower weakly semicon-
tinuous.

2 Solutions with an unbounded derivative. Reg-
ularization

2.1 Lagrangians of linear growth

A minimizing sequence may tend to a discontinuous function if the Lagrangian
growth slowly with the increase of u′. Here we investigate discontinuous solu-
tions of Lagrangians of linear growth. Assume that the Lagrangian F satisfies
the limiting equality

lim
|u′|→∞

F (x, u, u′)

|u′|
≤ βu (2)

where β is a nonnegative constant.
Considering the scalar case (u is a scalar function), we assume that the min-

imizing sequence tends to a finite discontinuity (jump) and calculate the impact
of it for the objective functional. Let a miniming sequence uε of differentiable
functions tend to a discontinuous at the point x0 function, as follows

uε(x) = φ(x) + ψε(x)

ψε(x) ⇁ αH(x− x0), β 6= 0

where φ is a differentiable function with the bounded everywhere derivative,
and H is the Heaviside function.

Assume that functions ψε that approximate the jump at the point x0 are
piece-wise linear,

ψε(x) =

 0 if x < x0 − ε
α
ε (x− x0 + ε) if x0 − ε ≤ x ≤ x0
α if x > x0.

The derivative (ψε)′ is zero outside of the interval [x0 − ε, x0] where it is equal
to a constant,

ψ′ =

{
0 if x /∈ [x0 − ε, x0]
α
ε if x ∈ [x0 − ε, x0]
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The Lagrangian is computed as

F (x, u, u′) =

{
F (x, φ, φ′) if x /∈ [x0 − ε, x0]

F
(
x, φ+ ψε, φ′ + α

ε

)
= αβ

ε + o
(
1
ε

)
if x ∈ [x0 − ε, x0]

Here, we use the condition (2) of linear growth of F .
The variation of the objective functional is∫ b

a

F (x, u, u′)dx ≤
∫ b

a

F (x, φ, φ′)dx+ αβ.

We observe that the contribution αβ due to the discontinuity of the minimizer
is finite when the magnitude |α| of the jump is finite. Therefore, discontinuous
solutions are tolerated in the problems with Lagrangian of linear growth: They
do not lead to infinitely large values of the objective functionals. To the contrary,
the problems with Lagrangians of superlinear growth β = ∞ do not allow for
discontinuous solution because the penalty is infinitely large.

Remark 2.1 The problems of Geometric optics and minimal surface are or linear
growth because the length

√
1 + u′2 linearly depends on the derivative u′. To the

contrary, problems of Lagrange mechanics are of quadratic (superlinear) growth
because kinetic energy depends of the speed q̇ quadratically.

2.2 Examples of discontinuous solutions

Example 2.1 (Discontinuities in problems of geometrical optics) We have
already seen in Section ?? that the minimal surface problem

I0 = min
u(x)

I(u), I(u) =

∫ L

o

u
√

1 + (u′)2dx, u(−1) = 1, u(1) = 1, (3)

can lead to a discontinuous solution (Goldschmidt solution)

u = −H(x+ 1) +H(x− 1)

if L is larger than a threshold.
Particularly, the Goldschmidt solution corresponds to zero smooth component

u(x) = 0, x = (a, b) and two jumps M1 and M2 of the magnitudes u(a) and u(b),
respectively. The smooth component gives zero contribution, and the contributions
of the jumps are

I =
1

2

(
u2(a) + u2(b)

)
The next example (Gelfand & Fomin) shows that the solution may exhibit

discontinuity if the superlinear growth condition is violated even at a single
point.
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Example 2.2 (Discontinuous extremal and viscosity-type regularization)
Consider the minimization problem

I0 = min
u(x)

I(u), I(u) =

∫ 1

−1
x2u′2dx, u(−1) = −1, u(1) = 1, (4)

We observe that I(u) ≥ 0 ∀u, and therefore I0 ≥ 0. The Lagrangian is convex
function of u′, and the third condition is satisfied. However, the second condition
is violated in x = 0:

lim
|u′|→∞

x2u′2

|u′|

∣∣∣∣
x=0

= lim
|u′|→∞

x2|u′|
∣∣∣∣
x=0

= 0

The functional is of sublinear growth at only one point x = 0.
Let us show that the solution is discontinuous. Assume the contrary, that the

solution satisfies the Euler equation (x2u′)′ = 0 everywhere. The equation admits
the integral

∂L

∂u′
= 2x2u′ = C.

If C 6= 0, the value of I(u) is infinity, because then u′ = C
2x2 , the Lagrangian

becomes

x2u′2 =
C2

x2
if C 6= 0.

and the integral of Lagrangian diverges. A finite value of the objective corresponds
to C = 0 which implies that u′0(x) = 0 if x 6= 0. Accounting for the boundary
conditions, we find

u0(x) =

{
−1 if x < 0

1 if x > 0

and u0(0) is not defined.
We arrived at the unexpected result that violates the assumptions used when

the Euler equation is derived: u0(x) is discontinuous at x = 0 and u′0 exists only in
the sense of distributions:

u0(x) = −1 + 2H(x), u′0(x) = 2δ(x)

This solution delivers absolute minimum (I0 = 0) to the functional, is not differen-
tiable and satisfies the Euler equation in the sense of distributions,∫ 1

−1

d

dx

∂L

∂u′

∣∣∣∣
u=u0(x)

φ(x)dx = 0 ∀φ ∈ L∞[−1, 1]

Regularization A slightly perturb the problem (regularization) yields to the
problem that has a classical solution and this solution is close to the discontinuous
solution of the original problem. This time, regularization is performed by adding to
the Lagrangian a stabilizer, a strictly convex function ερ(u′) of superlinear growth.

7



Consider the perturbed problem for the Example 4:

Iε = min
u(x)

Iε(u), Iε(u) =

∫ 1

−1

(
x2u′2 + ε2u′2

)
dx, u(−1) = −1, u(1) = 1,

(5)
Here, the perturbation ε2u′ is added to the original Lagrangian ε2u′; the perturbed
Lagrangian is of superlinear growth everywhere.

The first integral of the Euler equation for the perturbed problem becomes

(x2 + ε2)u′ = C, or du = C
dx

x2 + ε2

Integrating and accounting for the boundary conditions, we obtain

uε(x) =

(
arctan

1

ε

)−1
arctan

x

ε
.

When ε → 0, the solution uε(x) converges to u0(x) although the convergence is
not uniform at x = 0.

Unbounded solutions in constrained problems The discontinuous solu-
tion often occurs in the problem where the derivative satisfies additional in-
equalities u′ ≥ c, but is unbounded. In such problems, the stationary condition
must be satisfied everywhere where derivative is not at the constrain, u′ > c.
The next example shows, that the measure of such interval can be infinitesimal.

Example 2.3 (Euler equation is meaningless) Consider the variational prob-
lem with an inequality constraint

max
u(x)

∫ π

0

u′ sin(x)dx, u(0) = 0, u(π) = 1, u′(x) ≥ 0 ∀x.

The minimizer should either corresponds to the limiting value u′ = 0 of the deriva-
tive or satisfy the stationary conditions, if u′ > 0. Let [αi, βi] be a sequence of
subintervals where u′ = 0. The stationary conditions must be satisfied in the com-
plementary set of intervals (βi, αi+1]) located between the intervals of constancy.
The derivative cannot be zero everywhere, because this would correspond to a con-
stant solution u(x) and would violate the boundary conditions.

However, the minimizer cannot correspond to the solution of Euler equation at
any interval. Indeed, the Lagrangian L depends only on x and u′. The first integral
∂L
∂u′ = C of the Euler equation yields to an absurd result

sin(x) = constant ∀x ∈ [βi, αi+1]

The Euler equation does not produce the minimizer. Something is wrong!
The objective can be immediately bounded by the inequality∫ π

0

f(x)g(x)dx ≤
(

max
x∈[0,π]

g(x)

)∫ π

0

|f(x)|dx.
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that is valid for all functions f and g if the involved integrals exist. We set
g(x) = sin(x) and f(x) = |f(x)| = u′ (because u′ is nonnegative), account for the
constraints ∫ π

0

|f(x)|dx = u(π)− u(0) = 1 and max
x∈[0,π]

sin(x) = 1,

and obtain the upper bound

I(u) =

∫ π

0

u′ sin(x)dx ≤ 1 ∀u.

This bound corresponds to the minimizing sequence un that tends to a Heaviside
function un(x) → H(x − π/2). The derivative of such sequence tends to the
δ-function, u′(x) = δ(x − π/2). Indeed, immediately check that the bound is
realizable, substituting the limit of un into the problem∫ π

0

δ
(
x− π

2

)
sin(x)dx = sin

(π
2

)
= 1.

The reason for the absence of a stationary solution is the openness of the set
of differentiable function. This problem also can be regularized. Here, we show
another way to regularization, by imposing an additional pointwise inequality
u′(x) ≤ 1

γ ∀x (Lipschitz constraint). Because the intermediate values of u′ are

never optimal, optimal u′ alternates the limiting values:

u′γ(x) =

{
0 if x /∈

[
π
2 − γ,

π
2 + γ

]
,

1
2γ if x ∈

[
π
2 − γ,

π
2 + γ

]
,

The objective functional is equal to

I(uγ) =
1

2γ

∫ π
2 +γ

π
2−γ

sin(x)dx =
1

γ
sin (γ)

When γ tends to zero, IM goas to its limit

lim
γ→0

Iγ = 1,

the length γ of the interval where u′ = 1
2γ goes to zero so that u′γ(t) weakly

converges to the δ-function for u′, u′γ(t) ⇁ δ
(
x− π

2

)
.

This example clearly demonstrates the source of irregularity: The absence
of the upper bound for the derivative u′. The constrained variational problems
are studied in the control theory; they are are discussed later in Section ??.

2.3 Regularization by penalization

Regularization as smooth approximation The smoothing out feature of
regularization is easy demonstrated on the following example of a quadratic
approximation of a function by a smoother one.
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Approximate a function f(x) where x ∈ R, by the function u(x), adding a
quadratic stabilizer; this problem takes the form

min
u

∫ ∞
−∞

[ε2(u′)2 + (u− f)2]dx

The Euler equation
ε2u′′ − u = −f (6)

can be easily solved using the Green function

G(x, y) =
1

2ε
exp

(
−|x− y|

ε

)
of the operator in the left-hand side of (6). We have

u(x) =
1

2ε

∫ ∞
−∞

exp

(
−|x− y|

ε

)
f(y)dy

that is the expression of the averaged f . The smaller is ε the closer is the average
to f .

Quadratic stabilizers Besides the stabilizer εu′2 , other stabilizers can be
considered: The added term εu2 penalizes for large values of the minimizer,
ε(u′′)2 penalizes for the curvature of the minimizer and is insensitive to linearly
growing solutions. The stabilizers can be inhomogeneous like ε(u − utarget)2;
they force the solution stay close to a target value. The choice of a specific
stabilizer depends on the physical arguments (see Tikhonov).

For example, solve the problem with the Lagrangian

F = ε4(u′′)2 + (u− f(x))2

Show that u = f(x) if f(x) is any polynomial of the order not higher than three.
Find an integral representation for u(f) if the function f(x) is defined at the
interval |x| ≤ 1 and at the axis x ∈ R.

2.4 Complement: Regularization of a finite-dimensional
linear problem

As the most of variational methods, the regularization has a finite-dimensional
analog. It is applicable to the minimization problem of a convex but not strongly
convex function which may have infinitely many solutions. The idea of regular-
ization is to slightly perturb the function by small but a strictly convex term;
the perturbed problem has a unique solution to matter how small the pertur-
bation is. The numerical advantage of the regularization is the convergence of
minimizing sequences.

Let us illustrate ideas of regularization by studying a finite dimensional
problem. Consider a linear system

Ax = b (7)
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where A is a square n× b matrix and b is a known n-vector.
We know from linear algebra that the Fredholm Alternative holds:

• If detA 6= 0, the problem has a unique solution:

x = A−1b if detA 6= 0 (8)

• If detA = 0 and Ab 6= 0, the problem has no solutions.

• If detA = 0 and Ab = 0, the problem has infinitely many solutions.

In practice, we also deal with an additional difficulty: The determinant detA
may be a “very small” number and one cannot be sure whether its value is a
result of rounding of digits or it has a “physical meaning.” In any case, the errors
of using the formula (8) can be arbitrary large and the norm of the solution is
not bounded.

To address this difficulties, it is helpful to restate linear problem (7) as an
extremal problem:

min
x∈Rn

(Ax− b)2 (9)

This problem does have at least one solution, no matter what the matrix A
is. This solution coincides with the solution of the original problem (7) when
this problem has a unique solution; in this case the cost of the minimization
problem (9) is zero. Otherwise, the minimization problem provides ”the best
approximation” of the non-existing solution.

If the problem (7) has infinitely many solutions, so does problem (9). Cor-
responding minimizing sequences {xs} can be unbounded, ‖xs‖ → ∞ when
s→∞.

In this case, we may select a solution with minimal norm. We use the
regularization, passing to the perturbed problem

min
x∈Rn

(Ax− b)2 + εx2

The solution of the last problem exists and is unique. Indeed, we have by
differentiation

(ATA+ εI)x−AT b = 0

and
x = (ATA+ εI)−1AT b

We mention that

1. The inverse exists since the matrix ATA is nonnegative defined, and ε is
positively defined. The eigenvalues of the matrix (ATA + εI)−1 are not
smaller than ε−1

2. Suppose that we are dealing with a well-posed problem (7), that is the
matrix A is not degenerate. If ε � 1, the solution approximately is x =
A−1b− ε(A2AT )−1b When ε→ 0, the solution becomes the solution (8) of
the unperturbed problem, x→ A−1b.
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3. If the problem (7) is ill-posed, the norm of the solution of the perturbed
problem is still bounded:

‖x‖ ≤ 1

ε
‖b‖

Remark 2.2 Instead of the regularizing term εx2, we may use any positively define
quadratic ε(xTPx + pTx) where matrix P is positively defined, P > 0, or other
strongly convex function of x.

3 Infinitely oscillatory solutions: Relaxation

3.1 Nonconvex Variational Problems.

Consider the variational problem

inf
u

J(u), J(u) = inf
u

∫ 1

0

F (x, u, u′)dx, u(0) = a0, u(1) = a1 (10)

with Lagrangian F (x,y, z) and assume that the Lagrangian is nonconvex with
respect to z, for some values of z, z ∈ Zf.

Definition 3.1 We call the forbidden region Zf the set of z for which F (x,y, z)
is not convex with respect to z.

The Weierstrass test requires that the derivative u′ of an extremal never
assume values in the set Zf,

u′ 6∈ Zf. (11)

On the other hand, a stationary trajectory u may be required by Euler equations
to pass through this set. Such trajectories fail the Weierstrass test and must
be rejected. We conclude that the true minimizer (the limit of a minimizing
sequence) is not a classical differentiable curve, otherwise it would satisfy both
the Euler equation and the Weierstrass test.

We will demonstrate that a minimizing sequence tends to a “generalized
curve.” It consists of infinitely many infinitesimal zigzags. The derivative of the
minimizer ”jumps over” the forbidden set, and does it infinitely often. Because
of these jumps, the derivative of a minimizer stays outside of the forbidden
interval but its average can take any value within or outside the forbidden region.
The limiting curve – the minimizer – has a dense set of points of discontinuity
of the derivative.

Example of a nonconvex problem Consider a simple variational problem
that yields to an irregular solution [?]:

inf
u

I(u) = inf
u

∫ 1

0

G(u, u′)dx, u(0) = u(1) = 0 (12)
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where

G(u, v) = u2 +

 (v − 1)2, if v ≥ 1
2 Regime 1

1
2 − v

2 if − 1
2 ≤ v ≤

1
2 Regime 2

(v + 1)2 if v ≤ − 1
2 Regime 3

. (13)

The graph of the function G(., v) is presented in ??B; it is a nonconvex differ-
entiable function of v of superlinear growth.

The Lagrangian G penalizes the trajectory u for having the speed |u′| differ-
ent from ±1 and penalizes the deflection of the trajectory u from zero. These
contradictory requirements cannot be resolved in the class of classical trajecto-
ries.

Indeed, a differentiable minimizer satisfies the Euler equation (??) that takes
the form

u′′ − u = 0 if |u′| ≥ 1
2

u′′ + u = 0 if |u′| ≤ 1
2 .

(14)

The Weierstrass test additionally requires convexity of G(u, v) with respect
to v; the Lagrangian G(u, v) is nonconvex in the interval v ∈ (−1, 1) (see
??). The Weierstrass test requires the extremal (14) to be supplemented by the
constraint (recall that v = u′)

u′ 6∈ (−1, 1) at the optimal trajectory. (15)

The second regime in (14) is never optimal because it is realized inside of the
forbidden interval. It is not clear how to satisfy both the Euler equations and
Weierstrass test because the Euler equation does not have a freedom to change
the trajectory to avoid the forbidden interval.

We can check that the stationary trajectory can be broken at any point.
The Weierstrass-Erdman condition (??) (continuity of ∂L

∂u′ ) must be satisfied
at a point of the breakage. This condition permits switching between the first
(u′ > 1/2) and third (u′ < −1/2) regimes in (13) when[

∂L

∂u′

]+
−

= 2
(
u′(1) − 1

)
− 2

(
u′(3) + 1

)
= 0

or when
u′(1) = 1, u′(3) = −1

which means the switching from one end of the forbidden interval (−1, 1) to
another.

Remark 3.1 Observe, that the easier verifiable Legendre condition ∂2F
∂(u′)2 ≥ 0

gives a twice smaller forbidden region |u′| ≤ 1
2 and is not in the agreement with

Weierstrass-Erdman condition. One should always use stronger conditions!
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Minimizing sequence The minimizing sequence for problem (12) can be
immediately constructed. Indeed, the infimum of (12) obviously is nonnegative,
infu I(u) ≥ 0. Therefore, any sequence us with the property

lim
s→∞

I(us) = 0 (16)

is a minimizing sequence.
Consider a set of functions ũs(x) with the derivatives equal to ±1 at each

point,
ũ′(x) = ±1 ∀x.

These functions belong to the boundary of the forbidden interval of the non-
convexity of G(., v); they make the second term in the Lagrangian (13) vanish,
G(ũ, ũ′) = u2, and the problem becomes

I(ũs, (ũs)′) = min
ũ

∫ 1

0

(ũs)2dx. (17)

The sequence ũs oscillates near zero if the derivative (ũs)′ changes its sign on
intervals of equal length. The cost I(ũs) depends on the density of switching
points and tends to zero when the number of these points increases (see ??).
Therefore, the minimizing sequence consists of the saw-tooth functions ũs; the
heights of the teeth tend to zero and their number tends to infinity as s→∞.

Note that the minimizing sequence {ũs} does not converge to any classical
function. This minimizer ũs(x) satisfies the contradictory requirements, namely,
the derivative must keep the absolute value equal to one, but the function itself
must be arbitrarily close to zero:

|(ũs)′| = 1 ∀x ∈ [0, 1], max
x∈[0,1]

ũs → 0 as s→∞. (18)

The limiting curve u0 has zero norm in C0[0, 1] but a finite norm in C1[0, 1].

Remark 3.2 Below, we consider this problem with arbitrary boundary values; the
solution corresponds partly to the classical extremal (14), (15), and partly to the
saw-tooth curve; in the last case u′ belongs to the boundary of the forbidden interval
|u′| = 1.

Regularization and relaxation We may apply regularization to discourage
the solution to oscillate infinitely often. For example, we may penalize for the
discontinuity of the u′ adding the stabilizing term ε(u′′)2 to the Lagrangian.
Doing this, we pass to the problem

min
u

∫ 1

0

(ε2(u′′)2 +G(u, u′))dx

that corresponds to Euler equation:

ε2uIV − u′′ + u = 0 if |u′| ≥ 1
2

ε2uIV + u′′ + u = 0 if |u′| ≤ 1
2 .

(19)
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The Weierstrass condition this time requires the convexity of the Lagrangian
with respect to u′′; this condition is satisfied.

One can see that the solution of equation (19) is oscillatory; the period of
oscillations is of the order of ε� 1: The solution still tends to an infinitely often
oscillating distribution. When ε is positive but small, the solution has finite but
large number of wiggles. The computation of such solutions is difficult and often
unnecessary: It strongly depends on an artificial parameter ε, which is difficult
to justify physically. Although formally the solution of regularized problem
exists, the questions remain. The problem is still computationally difficult and
the difficulty grows when ε → 0 because the finite frequency of the oscillation
of the solution tends to infinity.

Below we describe the relaxation of a nonconvex variational problem. The
idea of relaxation is in a sense opposite to regularization. Instead of penalization
for fast oscillations, we admit oscillating functions as legitime minimizers en-
larging set of minimizers. The main problem is to find an adequate description
of infinitely often switching controls in terms of smooth functions. It turns out
that the limits of oscillating minimizers allows for a parametrization and can
be effectively described by a several smooth functions: the values of alternating
limits for u′ and the average time that minimizer spends on each limit. The
relaxed problem has the following two basic properties:

• The relaxed problem has a classical solution.

• The infimum of the functional (the cost of the problem) in the initial
problem coincides with the cost of the relaxed problem.

Here we will demonstrate two approaches to relaxation based on necessary
and sufficient conditions. Each of them yields to the same construction but
uses different arguments to achieve it. In the next chapters we will see similar
procedures applied to variational problems with multiple integrals; sometimes
they also yield the same construction, but generally they result in different
relaxations.

3.2 Minimal Extension

We introduce the idea of relaxation of a variational problem. Consider the
class of Lagrangians NF (x, y, z) that are smaller than F (x, y, z) and satisfy the
Weierstrass test W(NF (x, y, z)) ≥ 0:{

NF (x, y, z)− F (x, y, z) ≤ 0,
W(NF (x, y, z)) ≥ 0

∀ x, y, z. (20)

Let us take the maximum on NF (x, y, z) and call it SF . Clearly, SF corre-
sponds to turning one of these inequalities into an equality:

SF (x, y, z) = F (x, y, z), W(SF (x, y, z)) ≥ 0 if z 6∈ Zf,
SF (x, y, z) ≤ F (x, y, z), W(SF (x, y, z)) = 0 if z ∈ Zf.

(21)

This variational inequality describes the extension of the Lagrangian of an un-
stable variational problem. Notice that
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1. The first equality holds in the region of convexity of F and the extension
coincides with F in that region.

2. In the region where F is not convex, the Weierstrass test of the extended
Lagrangian is satisfied as an equality; this equality serves to determine
the extension.

These conditions imply that SF is convex everywhere. Also, SF is the maximum
over all convex functions that do not exceed F . Again, SF is equal to the convex
envelope of F :

SF (x, y, z) = CzF (x, y, z). (22)

The cost of the problem remains the same because the convex envelope corre-
sponds to a minimizing sequence of the original problem.

Remark 3.3 Note that the geometrical property of convexity never explicitly ap-
pears here. We simply satisfy the Weierstrass necessary condition everywhere.
Hence, this relaxation procedure can be extended to more complicated multidimen-
sional problems for which the Weierstrass condition and convexity do not coincide.

Recall that the derivative of the minimizer never takes values in the region
Zf of nonconvexity of F . Therefore, a solution to a nonconvex problem stays
the same if its Lagrangian F (x,y, z) is replaced by any Lagrangian NF (x,y, z)
that satisfies the restrictions

NF (x,y, z) = F (x,y, z) ∀ z 6∈ Zf,
NF (x,y, z) > CF (x,y, z) ∀ z ∈ Zf.

(23)

Indeed, the two Lagrangians F (x,y, z) and NF (x,y, z) coincide in the region of
convexity of F . Therefore, the solutions to the variational problem also coincide
in this region. Neither Lagrangian satisfies the Weierstrass test in the forbidden
region of nonconvexity. Therefore, no minimizer can distinguish between these
two problems: It never takes values in Zf. The behavior of the Lagrangian in
the forbidden region is simply of no importance. In this interval, the Lagrangian
cannot be computed back from the minimizer.

Minimizing Sequences Let us prove that the considered extension preserves
the value of the objective functional. Consider the extremal problem (10) of
superlinear growth and the corresponding stationary solution u(x) that may not
satisfy the Weierstrass test. Let us perturb the trajectory u by a differentiable
function ω(x) with the properties:

max
x
|ω(x)| ≤ ε, ω(xk) = 0 k = 1 . . . N (24)

where the points xk uniformly cover the interval (a, b). The perturbed trajectory
wiggles around the stationary one, crossing it at N uniformly distributed points
xk; the derivative of the perturbation is not bounded.
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The integral J(u, ω)

J(u, ω) =

∫ 1

0

F (x, u+ ω, u′ + ω′)dx

on the perturbed trajectory is estimated as

J(u, ω) =

∫ 1

0

F (x, u, u′ + ω′)dx+ o(ε).

because of the smallness of ω (see (24)). The derivative ω′(x) = v(x) is a new
minimizer constrained by N conditions (see (24))∫ k+1

N

k
N

v(x)dx = 0, k = 0, . . . N − 1; (25)

correspondingly, the variational problem can be rewritten as

J(u, ω) =

N−1∑
k=1

∫ k+1
N

k
N

F (x, u, u′ + ω′)dx+ o

(
1

N

)
.

Perform minimization of a term of the above sum with respect of v, treating u
as a fixed variable:

Ik(u) = min
v(x)

∫ k+1
N

k
N

F (x, u, u′ + v)dx subject to

∫ k+1
N

k
N

v(x)dx = 0

This is exactly the problem (??) of the convex envelope with respect to v.
By referring to the Carathéodory theorem (??) we conclude that the mini-

mizer v(x) is a piece-wise constant function in ( kN ,
k+1
N ) that takes at most n+1

values v1, . . . vn+1 at each interval. These values are subject to the constraints
(see (25))

mi(x) ≥ 0,

n∑
i=1

mi = 1,

p∑
i=1

mivi = 0. (26)

This minimum coincides with the convex envelope of the original Lagrangian
with respect to its last argument (see (??)):

Ik = min
mi,vi∈(26)

1

N

(
p∑
i=1

miF (x,u, u′ + vi)

)
(27)

Summing Ik and passing to the limit N →∞, we obtain the relaxed variational
problem:

I = min
u

∫ 1

0

Cu′F (x,u(x),u′(x)) dx. (28)

Note that n + 1 constraints (26) leave the freedom to choose 2n + 2 inner
parameters mi and vi to minimize the function

∑p
i=1miF (u,vi) and thus to

17



Average
derivative

Pointwise deriva-
tives

Optimal concen-
trations

Convex enve-
lope CG(u, v)

v < −1 v01 = v02 = v m0
1 = 1, m0

2 = 0 u2 + (v − 1)2

|v| < 1 v01 = 1, v02 = −1 m0
1 = m0

2 = 1
2

u2

v > 1 v01 = v02 = v m0
1 = 0, m0

2 = 1 u2 + (v + 1)2

Table 1: Characteristics of an optimal solution in Example ??.

minimize the cost of the variational problem (see (27)). If the Lagrangian is
convex, vi = 0 and the problem keeps its form: The wiggle trajectories do not
minimize convex problems.

The cost of the reformulated (relaxed) problem (28) corresponds to the cost
of the problem (10) on the minimizing sequence (??). Therefore, the cost of the
relaxed problem is equal to the cost of the original problem (10). The extension
of the Lagrangian that preserves the cost of the problem is called the minimal
extension. The minimal extension enlarges the set of classical minimizers by
including generalized curves in it.

3.3 Examples

Relaxation of nonconvex problem in Example ?? We revisit Example
??. Let us solve this problem by building the convex envelope of the Lagrangian
G(u, v):

CvG(u, v) = min
m1,m2

min
v1,v2

{
u2 +m1(v1 − 1)2 +m2(v2 + 1)2

}
,

v = m1v1 +m2v2, m1 +m2 = 1, mi ≥ 0. (29)

The form of the minimum depends on the value of v = u′. The convex envelope
CG(u, v) coincides with either G(u, v) if v 6∈ [0, 1] or CG(u, v) = u2 if v ∈ [0, 1];
see Example ??. Optimal values v01 , v

0
2 , m

0
1 m0

2 of the minimizers and the
convex envelope CG are shown in Table 1. The relaxed form of the problem
with zero boundary conditions

min
u

∫ 1

0

CG(u, u′)dx, u(0) = u(1) = 0, (30)

has an obvious solution,
u(x) = u′(x) = 0, (31)

that yields the minimal (zero) value of the functional. It corresponds to the
constant optimal value mopt of m(x):

mopt(x) =
1

2
∀x ∈ [0, 1]

.
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The relaxed Lagrangian is minimized over four functions u,m1, v1, v2 bounded
by one equality, u′ = m1v1 + (1−m1)v2 and the inequalities 0 ≤ m ≤ 1, while
the original Lagrangian is minimized over one function u. In contrast to the
initial problem, the relaxed one has a differentiable solution in terms of these
four controls.

Inhomogeneous boundary conditions Let us slightly modify this example.
Assume that boundary conditions are

u(0) = V (0 < V < 1), u(1) = 0

In this case, an optimal trajectory of the relaxed problem consists of two parts,

u′ < −1 if x ∈ [0, x0), u = u′ = 0 if x ∈ [x0, 1]

At the first part of the trajectory, the Euler equation u′′ − u = 0 holds; the
extremal is

u =

{
Aex +Be−x if x ∈ [0, x0)
0 if x ∈ [x0, 1]

Since the contribution of the second part of the trajectory is zero, the problem
becomes

I = min
u,x0

∫ x0

O

CvG(u, u′)dx

To find unknown parameters A,B and x0 we use the conditions

u(0) = V, u(x0) = 0, u′ = −1

The last condition expresses the optimality of x0, it is obtained from the con-
dition (see (??))

CvG(u, u′)|x=x0
= 0.

We compute

A+B = V, Aex0 +Be−x0 = 0, Aex −Be−x = 1

which leads to

u(x) =

{
sinh(x− x0) if x < x0,
0 if x > x0,

x0 = sinh−1(V )

The optimal trajectory of the relaxed problem decreases from V to zero and
then stays equal zero. The optimal trajectory of the actual problem decays to
zero and then become infinite oscillatory with zero average.
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Relaxation of a two-wells Lagrangian We turn to a more general example
of the relaxation of an ill-posed nonconvex variational problem. This example
highlights more properties of relaxation. Consider the minimization problem

min
u(x)

∫ z

0

Fp(x, u, u
′)dx, u(0) = 0, u′(z) = 0 (32)

with a Lagrangian
Fp = (u− αx2)2 + Fn(u′), (33)

where
Fn(v) = min{a v2, b v2 + 1}, 0 < a < b, α > 0.

Note that the second term Fn of the Lagrangian Fp is a nonconvex function of
u′.

The first term (u − αx2)2 of the Lagrangian forces the minimizer u and
its derivative u′ to increase with x, until u′ at some point reaches the interval
of nonconvexity of Fn(u′), after which it starts oscillating by alternation of the
values of the ends of this interval, because u′ must vary outside of this forbidden
interval at every instance. (see ??)

To find the convex envelope CF we must transform Fn(u′) (in this example,
the first term of Fp (see (33)) is independent of u′ and it does not change after
the convexification). The convex envelope CFp is equal to

CFp = (u− αx2)2 + CFn(u′). (34)

The convex envelope CFn(u′) is computed in Example ?? (where we use the
notation v = u′). The relaxed problem has the form

min
u

∫
CFp(x, u, u′)dx, (35)

where

CFp(x, u, u′) =


(u− αx2)2 + a(u′)2 if |u′| ≤ v1,
(u− αx2)2 + 2u′

√
ab
a−b −

b
a−b if v1 ≤ |u′| ≤ v2,

(u− αx2)2 + b(u′)2 + 1 if |u′| ≥ v2.

Note that the variables u, v in the relaxed problem are the averages of the
original variables; they coincide with those variables everywhere when CF = F .
The Euler equation of the relaxed problem is

au′′ − (u− αx2) = 0 if |u′| ≤ v1,
(u− αx2) = 0 if v1 ≤ |u′| ≤ v2,

bu′′ − (u− αx2) = 0 if |u′| ≥ v2.
(36)

The Euler equation is integrated with the boundary conditions shown in (32).
Notice that the Euler equation degenerates into an algebraic equation in the
interval of convexification. The solution u and the variable ∂

∂u′ CF of the relaxed
problem are both continuous everywhere.
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Integrating the Euler equations, we sequentially meet the three regimes when
both the minimizer and its derivative monotonically increase with x (see ??).
If the length z of the interval of integration is chosen sufficiently large, one
can be sure that the optimal solution contains all three regimes; otherwise, the
solution may degenerate into a two-zone solution if u′(x) ≤ v2 ∀x or into a
one-zone solution if u′(x) ≤ v1 ∀x (in the last case the relaxation is not needed;
the solution is a classical one).

Let us describe minimizing sequences that form the solution to the relaxed
problem. Recall that the actual optimal solution is a generalized curve in the
region of nonconvexity; this curve consists of infinitely often alternating parts
with the derivatives v1 and v2 and the relative fractions m(x) and (1−m(x)):

v = 〈u′(x)〉 = m(x)v1 + (1−m(x))v2, u′ ∈ [v1, v2], (37)

where 〈 〉 denotes the average, u is the solution to the original problem, and 〈u〉
is the solution to the homogenized (relaxed) problem.

The Euler equation degenerates in the second region into an algebraic one
〈u〉 = αx2 because of the linear dependence of the Lagrangian on 〈u〉′ in this
region. The first term of the Euler equation,

d

dx

∂F

∂ 〈u〉′
≡ 0 if v1 ≤ | 〈u〉′ | ≤ v2, (38)

vanishes at the optimal solution.
The variable m of the generalized curve is nonzero in the second regime.

This variable can be found by differentiation of the optimal solution:

(〈u〉 − αx2)′ = 0 =⇒ 〈u〉′ = 2αx. (39)

This equality, together with (37), implies that

m =


0 if |u′| ≤ v1,

2α
v1−v2x−

v2
v1−v2 if v1 ≤ |u′| ≤ v2,

1 if |u′| ≥ v2.
(40)

Variable m linearly increases within the second region (see ??). Note that the
derivative u′ of the minimizing generalized curve at each point x lies on the
boundaries v1 or v2 of the forbidden interval of nonconvexity of F ; the average
derivative varies only due to varying of the fraction m(x) (see ??).

21


