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Polymorphic materials

• Smart materials, martensite alloys, 
polycrystals and similar materials can 
exist in several forms   (phases). 

• The Gibbs principle states that the phase 
with minimal energy is realized.
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Energy minimization + nonconvexity 
=structured materials

Martensites alloy with 
“twin” monocrystals Polycrystals of granulate Mozzarella cheese

An optimal isotropic
conductor

Falcon’s Feather An optimal design
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Dynamic problems for multiwell energies

w∂∇
Φ∂=σ

w∇

• Problems of description of damageable 
materials and materials under phase 
transition deal with nonmonotone 
constitutive relations 

• Nonconvexity of the energy leads to 
nonmonotonicity and  nonuniqueness of 
constitutive relations.
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Static (Variational) approach

w∇

The Gibbs variational principle is able 
to select the solution with the least 
energy that corresponds to the 
(quasi)convex envelope of the energy. 

At the micro-level, this solution 
corresponds to the transition state and 
results in a fine mixture of several 
pure phases (Maxwell line)w∂∇

Φ∂=σ
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Multivariable problems: Account for integrability 
conditions leads to quasiconvexity

•One-dimensional problem:
The strain u’ in a stretched composed 
bar can be discontinuous

The only possible mode of deformation 
of an elastic medium is the  uniform 
contraction (Material from Hoberman 
spheres), then
The strain field is continuous 
everywhere

In multidimensional problems,
the tangential components of the strain 
are to be continuous, Correspondingly,
Convexity is replaced with Quasiconvexity

Microsoft 
Equation 3.0
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Dynamic problems for multiwell energies

• Formulation: Lagrangian for a continuous medium
If W is (quasi)convex

• If W is not quasiconvex

• Questions: 
– There are many local minima; each corresponds to an equilibrium.

How to distinguish them?
– The realization of a particular local minimum depends on the existence of a 

path to it. What are initial conditions that lead to a particular local minimum?
– How to account for dissipation and radiation?
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Radiation 
and other 

losses

Dynamic 
homogenization
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Paradoxes of relaxation of an energy by a 
(quasi)convex envelope.

• To move along the surface of minimal energy, the particles must:
– Sensor the proper instance of jump over the barrier
– Borrow somewhere  an additional energy, store it, and use it to jump over 

the barrier
– Get to rest at the new position, and return the energy 
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☺

I suddenly feel that now 
it is the time to leave 

my locally stable 
position!

Thanks for the energy! I needed 
it to get over the barrier. 

What a roller coaster! 

Stop right here! Break!
Here is your energy.Take 

it back. 

Energy
bank

Energy
bank



Method of dynamic homogenization

• We are investigating mass-spring chains and lattices, which allows to
– account for concentrated events as breakage
– describe the basic mechanics of transition
– compute the speed of phase transition.

• The atomic system is strongly nonlinear but can be piece-wise linear.

• To obtain the macro-level description, we 
– analyze the solutions of this nonlinear system at micro-level 
– homogenize these solutions,
– derive the consistent equations for a homogenized system.
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Waves in active materials

• Links store additional energy remaining stable. Particles are inertial.
• When an instability develops, the excessive energy is transmitted to the 

next particle, originating the wave.
• Kinetic energy of excited waves takes away the energy, the transition 

looks like an explosion.
• Active materials: Kinetic energy is bounded from below
• Homogenization: Accounting for radiation and the energy of high-

frequency modes is needed.

Extra energy
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Dynamics of chains from bi-stable 
elements (exciters)

with Alexander Balk, Leonid Slepyan, and Toshio 
Yoshikawa

A.Balk, A.Cherkaev, L.Slepyan 2000. IJPMS
T.Yoshikawa, 2002, submitted
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Unstable reversible links

• Each link consists of two parallel 
elastic rods, one of which is 
longer. 

• Initially, only the longer road 
resists the load. 

• If the load is larger than a critical  
(buckling)value:
9 The longer bar looses stability 

(buckling), and 
9 the shorter bar assumes the load. 

The process is reversible.

Force

Elongation

)1()( −−= xHxxf
H is the Heaviside function

No parameters!
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Chain dynamics. Generation of a spontaneous 
transition wave

1 1

1 1

linear chain

1 1

nonlinear impacts
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Observed spontaneous waves in a chain 

Under a smooth excitation, 
the chain develops  
intensive oscillations and 
waves.

Sonic wave

“Twinkling” phase “Chaotic” phase

Wave of phase 
transition
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“Twinkling” phase and 
Wave of phase transition (Small time scale)

After the wave of transition, the chain transit to a new 
twinkling (or headed) state.

We find global (homogenized) parameters of transition:
9 Speed of the wave of phase transition
9 “Swelling” parameter
9 Period
9 Phase shift

1 1

1 1

linear chain

1 1

nonlinear impacts

( ) ( ) ( ) ( )
( ) 2

( ) ( ) ( )

k k k k k k k

k k k k

k k k k k

mX f X X f X X L X N X
L X X X X

N X H X X a H X X a

− +

− +

− +

= − − − = +
= − +

= − − − − −

&&

144424443

14444444244444443

Delft, Dec. 2003



Periodic waves: Analytic integration

Approach, after Slepyan and Troyankina
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external forces; period is unknown 

Self-similarity
Periodicity
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System (*) can be integrated 
by means of Fourier series.

A single nonlinear algebraic equation
defines the instance θ. 
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1. Stationary waves

Use of the piece-wise linearity of the system of ODE and the above assumptions

The system is integrated as a linear system (using the Fourier transform), 

then the nonlinear algebraic equation 

for the unknown instances θ of the application/release  of the applied forces is 
solved.

Result: The dispersion relation
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2. Waves excited by a point source
For the wave of phase transition we assume that k-th
mass enters the twinkling phase after k periods

The self-similarity assumption is weakened. 
Asymptotic periodicity is requested.
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Large time range description

with Toshio Yoshikawa
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Problem of dynamic homogenization
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Consider a chain, fixed at the lower end 
and is  attached by a “heavy” mass  M=3,000 m
at the top.

Problem:
Approximate the motion of the mass M by a single differential equation

Find

,),( ∑=Ψ= kXLLLM &&

( )LΨ

T >> 1/M,  M >>m



Result: numerics + averaging

Average curve is 
smooth and 
monotonic.

Minimal  value of 
derivative is close to 
zero.
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Homogenized constitutive relation 
(probabilistic approach)

Coordinate of the “large mass” is the sum of elongations of many
nonconvex springs that (as we have checked by numerical 
experiments) are almost uncorrelated, (the correlation decays 
exponentially, ) while the time average of the force is the same in 
all springs:

The dispersion is of the order of the hollow in the nonconvex constitutive 
relation.
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Add a small dissipation:

)()( 11 kkkkkk XXfXXfXXm −−−=+ +−
&&& α

Continuous limit is very different: The force becomes

The system demonstrates a strong hysteresis. 
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Homogenized model (with dissipation)

• Initiation of 
vibration is modeled 
by the break of a 
barrier each time
when the unstable 
zone is entered.

• Dissipation is 
modeled by  tension 
in the unstable zone.

v
Broken
barrier

Tension bed

Small magnitude:
Linear elastic 
material

Broken
barrier

Larger magnitude:
Highly dissipative nonlinear 
material.
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Energy path
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Slow motion

Initial energy

Energy of 
high-frequency 

vibrations:

Dissipation

High-frequency 
vibrations. 

The magnitude
of the high-frequency 
mode is bounded from 
below



Waves in infinite bistable chains
(irreversible transition)

In collaboration with Elena Cherkaev, Leonid 
Slepyan, and Liya Zhornitskaya
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Elastic-brittle material
(limited strength)

• The force-versus-elongation relation is a monotonically elongated bar 
from elastic-brittle material is

• Accounting for the prehistory, we obtain the relation
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c(x,t) is the damage parameter
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Waiting links
• It consists of two “parallel” rods; one 

is slightly longer. 
• The second (slack) rod starts to resist 

when the elongation is large enough. 
• Waiting links allow to increase the 

interval of stability.

)()())(1()())(1(),,( 221121 τττ −−−−+−= LHLfLcLfLcccLf
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Chain of rods

• Several elements form a chain ),(),( 111 −−+ −−−−−= kkkkkkk caxxfcaxxfxm &&

What happens when the chain is elongated?

Multiple breakings occur and “Partial damage” propagates along the rod.
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Tao of Damage
Tao -- the process of nature by which all things change 
and which is to be followed for a life of harmony. Webster

o Damage happens! 
o Uncontrolled, damage concentrates and destroys 
o Dispersed damage absorbs energy

o Design is the art of scattering the damage



Quasistratic state and the energy

The chain behaves as a superplastic material

The absorbed energy Ew is proportional to 
the number of “partially damaged” links;

1)1(1 >−+= αN
E
Ew

Breaks of basic links

Elongation

Final break

Force

The chain absorbs more energy before total breakage than a single rod of the 

combined thickness;
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Waves in waiting-link structures

• Breakages transform the energy of the impact to energy of waves which 
in turn radiate and dissipate it.

• Waves take the energy away from the zone of contact.
• Waves concentrate stress that may destroy the element.

A large slow-moving mass (7% of the speed of sound) 
is attached to one end of the chain, the other end is 
fixed.
During the simulation, the mass of the projectile M 
was increased until the chain was broken.
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Constitutive relation
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Constitutive relation in links a is the fraction of material
Used in the foreran “basic link
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Results
Efficiency: 750/150=5
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a=1 (no waiting 
links)
M = 150

M=375, 
a=0.25

M=700
a=.25
Small 
dissipation

M=750
a=.25
Small 
dissipation



Use of  a linear theory for description of nonlinear 
chains

The force in a damageable link is viewed as a linear response to the 
elongation plus an additional external pair of forces, applied in the 
proper time when Z reaches the critical value. 

Trick (Slepyan and Troyankina, 1978): model the jump in resistance by an action 
of an external pair of forces

Force

Elongation
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Wave motion: Assumptions

• Wave propagate with a constant but unknown speed v
• Motion of all masses is self-similar

• Therefore, the external pairs of forces are applied at equally-distanced 
instances 

• The problem becomes a problem about a wave in a linear chain caused 
by applied pair of forces. 
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Scheme of solution

• Pass to coordinates moving with the wave

• Using Fourier transform, solve the equation

• Return to originals, find the unknown speed from the breakage 
condition.
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Results
• Dependence of the waves speed
versus initial pre-stress v=v(p).

Measurements of the speed

The speed of the wave is found from atomistic model, 
as a function of prestress.

The propagation of the wave is contingent on its accidental initiation.
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Comments

• The solution is more complex when the elastic properties are changed after 
the transition. 

• One needs to separate waves originated by breakage from other possible 
waves in the system. For this, we use the “causality principle” (Slepyan) or 
viscous solutions.

• In finite networks, the reflection of the wave in critical since the 
magnitude doubles.

• The damage waves in two-dimensional lattices is described in the same 
manner, as long as the speed of the wave is constant.

• The “house of cards” problem: Will the damage propagate?
• Similar technique addresses damage of elastic-plastic chains.
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Lattices with waiting elements
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Green’s function for a damaged lattice

Green’s function: Influence of one 
damaged link:

N

N’
( , , , ')
( ', ') : '

F k m N N
G k k m m N N

=
− − ⊗

F(k,m, N, N’)

( ) ( )

( ) ( )

31 cos cos( ) 4cos 6 cos cos( )2 2
3 3cos cos( ) cos cos( ) 22 2

F
q p q p q p q

G
q p q q p q

⎛ ⎞+ − + − − −⎜ ⎟= ⎜ ⎟
⎜ ⎟− − + − −⎝ ⎠

Delft, Dec. 2003



State of a damaged lattice

N

N’

State of a partially damaged lattice:
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extern
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Q: How to pass from one permissible 
configuration to another?

F(k,m, N, N’)
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Unstrained damaged configurations

• Generally, damage propagates like a crack 
due to local stress concentration.

• The expanded configurations are not 
unique.

• There are exceptional unstrained 
configurations 

which are the attraction points of the 
damage dynamics and the null-space of F.

damage ( , , ) 0F k m N =
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Set of unstrained configurations

• The geometrical problem of description 
of all possible unstrained configuration 
is still unsolved. 

• Some sophisticated configurations can 
be found.

• Because of nonuniqueness, the 
expansion problem requires dynamic 
consideration.

Random lattices: Nothing known
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Waves in bistable lattices
Today, we can analytically describe 
two types of waves in bistable 
triangular lattices:
– Plane (frontal) waves
– Crack-like  (finger) waves

We find condition (pre-stress)  for 
the wave propagation and the 
wave’ speed (dispersion relations)
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Damage in two-dimensional lattice

(with Liya Zhornitzkaya)
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Effectiveness of structure resistance

v(0)• To measure the effectiveness, we use the ratio 
R of the momentum of the projectile after and 
before the impact. This parameter is 
independent of the type of structural damage.

v(T)

v(T)

Elastic 
collision

Free
propagation

rejection absorption

Value of R 1 -1 0
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Conclusion

• The use of atomistic models is essential to describe phase transition 
and breakable structures.

• These models allows for description of nonlinear waves, their speed, 
shape change, and for the state of new twinkling phase. 

• Dissipation is magnified due to accompanied fast oscillations.

• Radiation and the energy loss is described as activation of fast modes.
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