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1 Introduction

1.1 The phenomenon

1.1.0.1 Evolution and optimization criteria We observe that some
trees have grains spiralling around their trunk. An example is Ponderosa pine
that grows in rocky windy terrains in South West of the United State (Utah,
Anizona, Nevada). One wonders what an evolution signi�cance of such de-
sign is. The paper concerns with morphology of tree's trunk from structural
optimization viewpoint. Speci�cally, we investigate the reasons behind spiral
grows of the Ponderosa pine trunk in southern Utah. These trees develop heli-
coidal wood �bers that wiggle around the trunk. Spiral grains can be seen on
many trees when their barks are removed from the trunks. The spiralling angle
is about 30�� 50�. The question is why they twist. The considered problem is
an example of the inverse optimization problem [5] that arrives in evolution
biology.

Studying morphology like bones or trees'trunks that are critical for the sur-
vival of the species, we may postulate that they are optimally adapted to
the environment. Trees' trunks should stay unbroken and be able to sustain
extreme wind loads applied from all directions. If a natural design becomes
more complex, there must be a good reason for this. We treat the evolution-
ary development of the species as the minimizing sequence of an optimization
problem with unknown objective. Many di�erent reasons and hypotheses have
been suggested to explain the spiralling, among them are such exotic factors
as the earth rotation, the wind, and even the gravitational e�ect of the moon
[7].

1.1.0.2 Factors that control the spiralling of the grains Here, we
attempt to �nd the answer considering the morphology of a trunk as a result



of an optimization of a mechanical construction. We model the trunk as an
anisotropic cylinder with helicoidal symmetry, compute the stresses, and op-
timize the angle of the grains inclination using a failure criterion. When the
structure of the tree is optimized only for the strength, the objective remains
practically neutral to the variation of the angle of spiralling if the angle does
not exceed a limit, then the strength declines. The measured angle on the Pon-
derosa pine in Southern Utah corresponds to this limit. Additional mechanical
features of twisted trunks are discussed in Section 4

Why does the tree develop the maximally possible (from the strength per-
spective) angle of spiralling? We assume, that another biological factor must
be considered: The transportation of the 
uid from the roots to the branches.
The theory worked out by Kubler [8] provides a convincing qualitative reason
for the spiralling. The tree's branches with straight grain are fed only by those
roots directly below them. Each grain transports the water from the root to
the branch above it. These trees grow in the rocky terrains where often half of
the roots on one side of the tree meets a solid rock. These roots are reduced
and they do not supply water to the corresponding branches. The spiralling
allows the uniform watering of the branches across the trunk even if the roots
grow from one side only. If all the roots on one side die, that side of the tree
is still healthy. This has been proven [8] by injecting conifers with dye at the
base. In addition to this consideration, trees become less sti� and bend more
easily because of the spiralling grain. The bending allows trees to become more
e�ective at discarding excessive snow from their branches and more resistant
to breakage from heavy wind.

1.1.0.3 About inverse optimization problems Notice that the opti-
mization problems in engineering and in biology are mutually reciprocal. The
biological structure is known, but it is not clear in what sense the structure is
optimal. By contrast, the goal of the engineering is the minimization of a given
functional that is not the subject of a search; the problem is to �nd an unknown
optimal structure. This observation re
ects the principal di�erence between
biology that seeks an answer to the question: Why are the bio-materials and
the biomimetics of living organisms the way they are and how to make an
optimal structure.

1.2 Optimization problem

This qualitative analysis,however, does not tell us how large the angle of the
spiralling is. This paper performs stress analysis to estimate that angle. Based
on the above consideration, we claim that the design of the trunk corresponds
to a solution to the following problem of structural optimization:
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Given a axisymmetric cylinder (the trunk) from an orthotropic elastic ma-
terial (the wood), �nd the variable angle of inclination of the main axes of
anisotropy to the cylinder's axes, which reduces its strength to the value
less than a certain level.

The structure of the paper is as follows. In the next section, we analyze the
stresses in an anisotropic cylinder that models the tree's trunk. This stress
analysis considers the structure under an axial loading and bending moment.
The stresses are computed as a function of the grain angle. The analysis of the
stresses in the anisotropic cylinder with helicoidal symmetry under bending
and compression loads is performed by introducing elastic potentials which
generalize the potentials for cylindrical anisotropy.

The objective is to determine the in
uence of the grain angle on the strength of
the structure. To estimate the strength, the Tsai-Hill failure criterion is used.
We demonstrate that our numerical results are in agreement with the observed
values of the angle of grain spiralling. Additional factors are considered in Sec 4

2 Analysis

2.1 Linear stress analysis

The displacements are solved directly from the divergence of stress without
the presence of the body forces.

r � � = 0 (1)

We consider the general case of the elastic equilibrium of a loaded homoge-
neous cylinder having cylindrical anisotropy. The problem is such that at each
point, there are no planes of elastic symmetry normal to the generators, and
therefore, the cross sections do not remain plane after deformation. We ap-
proach this problem by solving the equilibrium equations for the displacement.
The objective of this part is to obtain the stress �eld and the displacement
functions for a structure with cylindrically anisotropy.

2.1.1 Generalized plane strain

We analyze the structure with a helicoidal anisotropy, which possesses 13
elastic constants. Its stress-strain relationship in the cylindrical coordinate
can be expressed as following [4]:
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Fig. 1. Schematic of the cylindrical anisotropic body under various loads.
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The compliance matrix is obtained by rotating matrix [10] from the material
local coordinate to the cylindrical coordinate. For such structure (Fig 1), there
exists no antiplane nor plane strain; all three displacements are coupled and
depend only on r and �. The strain "zz is not zero because the structure has
a �nite length and a �nite region of the cross section.

The approximated solutions for displacements of the generalized plane strain
are given as follow [9]

u=U(r; �)�
z2

2
(A cos � +B sin �) + u1 (3)

v=V (r; �)�
z2

2
(B cos � � A sin �) + v1 + #rz (4)

w=W (r; �)� z (Ar cos � +Br sin � + C) + w1 (5)

where u1, v1, and w1 represent rigid-body displacements. A, B, C, and # are
constants that can be determined from the boundary conditions. Relating the
displacements to stresses in (2) via strain-displacement relation and solving
(1), the displacement functions are obtained.
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2.1.2 Displacement functions

Two load cases are considered, axial load and pure bending. Assuming small
deformations, these cases are solved separately and combined for total stress
afterward. The solutions to the equilibrium equations are sought in the form
of power series. Neglecting rigid-body displacements, the displacements are
found as follow:

� Case 1: Axial loading with external and internal pressure:

U(r; �)=
�
U1r + U2r

a1 + U3r
�a1 + Upr

�
(6)

V (r; �)=W (r; �) = 0 (7)

� Case 2: Pure bending with external and internal pressure:

U(r; �)=
�
U0r

a0 + U1r
a1 + U2r

�a1 + U3r
a2 + U4r

�a2 + Upr
2
�
sin � (8)

V (r; �)=
�
V0r

a0 + V1r
a1 + V2r

�a1 + V3r
a2 + V4r

�a2 + Vpr
2
�
cos � (9)

W (r; �)=
�
W0r +W1r

a1 +W2r
�a1 +W3r

a2 +W4r
�a2

+Wpr
2
�
cos � (10)

The unknown constants,Ui, Vi, and Wi (i = 0::4) are determined from the
boundary conditions. The subscript p denotes the particular solution.

2.2 Nonlinear stress analysis

The linear analysis is applicable when the deformation is small in comparison
to the geometry of the structure. However, when the transverse de
ection is
large, extra moment is generated by the axial load and the problem becomes
nonlinear.

The �nite element method (FEM) is used in the nonlinear analysis. A 3-D eight
node element as shown in Fig 2 is used for the computation. The element has
three degree of freedoms, ux, uy, and uz. The shape functions are obtained
from the following displacement functions [1]:
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Fig. 2. Sketch of element and its coordinates.

u=
1

8
[uI(1� s)(1� t)(1� r) + uJ(1 + s)(1� t)(1� r)

+uK(1 + s)(1 + t)(1� r) + uL(1� s)(1 + t)(1� r)

+uM(1� s)(1� t)(1 + r) + uN(1 + s)(1� t)(1 + r)

+uO(1 + s)(1 + t)(1 + r) + uP (1� s)(1 + t)(1 + r)

+ uM(1� s)(1� t)(1 + r) + uN(1 + s)(1� t)(1 + r)]

+u1(1� s2) + u2(1� t2) + u3(1� r2)

v=
1

8
[vI(1� s) an analogous to u

w=
1

8
[wI(1� s) an analogous to u

The tree is model as a cylinder having constraints in all degree of freedoms at
one end while a surface pressure equivalent to the axial load is applied normal
to the cross-section at the other end. A moment is generated at the free end
by the applied couple.

2.3 Failure criteria

Due to the nature of the anisotropy, the conventional maximum strength cri-
terion for isotropic materials gives a poor prediction of failure. Instead. Tsai-
Hill failure criterion is used to predict the failure of a structure that have an
anisotropic body.

�
�1
�1u

�2

+
�
�2
�2u

�2

�
�1�2
�2
1u

+
�
�12
�12u

�2

< 1 (11)

Subscripts 1, 2, and 12 indicates the �ber and the transverse direction. The
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Table 1
Elastic moduli of Ponderosa pine with 12 % moisture content, GPa.

E1 E2 E3 G12 G13 G23 �31 �32 �12 �21 �13 �23

0.85 0.51 10.1 0.065 0.71 0.67 0.337 0.4 0.426 0.359 0.41 0.033

subscript u denotes the ultimate strength of the material in that corresponding
direction. When the left hand side of (11) is greater than or equal to 1, the
failure is predicted. No distinction is made between compressive and tensile
stresses.

3 Analysis of Ponderosa pine

3.1 Setting of the parameters

The trunk of the Ponderosa pine is assumed to be a cylinder having radius
r = 0:254 m. The axial load has the magnitude P = 22 kN. The bending
moment is 57 kN�m. The material properties of the Ponderosa pine are shown
in Table 1 [3]. Material strengths are [6]: �33t = 43 MPa, �33c = �36 MPa,
�22t = 2:8 MPa, �22c = �5:1 MPa, �23ul = 8 MPa.

3.2 Strength of the Ponderosa pine and its failure prediction

The results are shown in the form of failure prediction as a function of spiralling
angle (Fig 3 and 4). The + and - in the legends represent � = �=2 and
� = ��=2.

The results from Fig 3 and 4 show that the failure prediction value increases
slowly to about 30�, and then the slope increases dramatically beyond this
point. The tree strength is not sacri�ced considerably, as long as the grain
angle remains below 30�. Moreover, the failure predictions from both plots
yield the similar result only up to this angle. The nonlinear analysis shows that
the structure is most likely to fail when the grain angle is 60�. In contrast, the
linear analysis indicates 90� for the same geometry and loading parameters.
As the wind force causes the tree to bend, the axial loading due to leaves and
snow generate the bending moment.
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Fig. 3. Failure prediction value for spiralling angle from 0� to 90�: linear analysis.

3.3 Transverse displacement

The relationship between the twist of the Ponderosa pine's trunk and its me-
chanical properties still remains uncleared. It is more reasonable to assume
that the spiralling is due to the 
uid transportation within the structure of
the tree. The present analysis shows that excessive spiralling not only reduces
the sti�ness of the tree but also weakens the strength of the tree. Hence, a
limiting point on how much the sti�ness can be reduced in order for a tree to
stand up straight is observed.

The spiralling is needed to generate enough de
ection that does not risk the
instability in order to discard excessive snow. The maximum de
ection under
the assumed geometry and loads shows a large increase between 30��60� when
comparing the the di�erences to other intervals of spiralling angle (Fig 5). Most
Ponderosa pines observed in Southern Utah shows the spiralling of grain at
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Fig. 4. Failure prediction value for spiralling angle from 0� to 90�: non-linear anal-
ysis.

angle between 30� � 50�.
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Fig. 5. Transverse displacement along the axis of the tree.

4 Additional factors

(1) In nature, the grain angle is bigger toward the bottom and reduces toward
the top of the tree. When the tree is small, it requires more distribution
of 
uid to ensure proper growth. Having the �ber spiralling at a bigger
angle allows the tree to transport more 
uid along its circumference. As
the tree grows taller, the angle becomes smaller, which allows the 
uid
to be transported to the higher portion faster by reducing the coverage
area. This could be another reason why the grain angle varies this way.
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Details about the 
uid transportation are not discussed here since it is
beyond the scope of this analysis.

(2) We did not consider the cracking of the trunk in our analysis which maybe
an important factor. Looking at the elastic constants of Ponderosa pine,
one �nds that E2 is approximately 5% of E3, which is almost as there is
a crack. With this in mind, Leonid Slepyan (via private communication)
has pointed out that, as the crack wiggles around the tree, it is less prone
to fracture than when the crack is vertically straight.

(3) Due to lack of information and actual data of the average wind load and
the load that can uproot the Ponderosa pine, it is not possible to give
a solid conclusion regarding relationships between the magnitude of the
twist and the elastic properties of trees. In addition, the results presented
in this analysis only re
ect the Ponderosa pine.

5 Conclusion

Our analysis shows that the question of the adaptation of a tree trunk can
be viewed as a problem of constrained minimization. The spirals in the grain
are developed for the non-mechanical reasons (e.g. transport of the water to
branches) and the strength analysis provides a constraint that limits the angle
of these spirals. In short, a structure can be more 
exible by having the �bers
spiral along its circumference. However, depending on the elastic properties of
the material, the angle of the spiral can vary.
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