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Abstract

The paper suggests exact bounds for the e�ective conductivity of an isotropic
multimaterial composite, which depend only on isotropic conductivities of the mixed
materials and their volume fractions. These bounds re�ne Hashin-Shtrikman and
Nesi bounds in the region of parameters where they are loose. The bounds by poly-
convex envelope are modi�es by taking into account the range of �elds in optimal
structures. The bounds are a solution of a formulated �nite-dimensional constrained
optimization problem. For three-material composites, bounds for e�ective conduc-
tivity are found in an explicit form. Three-material isotropic microstructures of
extremal conductivity are found. It is shown that they realize the bounds for all
values of conductivities and volume fractions. Optimal structures are laminates of
a �nite rank. They vary with the volume fractions and experience two topological
transitions: For large values of m1, the domain of material with minimal conduc-
tivity is connected, for intermediate values of m1, no material forms a connected
domain, and for small values ofm1, the domain intermediate material is connected.

Keywords E�ective properties, multimaterial composites, quasiconvexity, poly-
convexity, nonconvex variational problem.
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1 Introduction

1.1 Hashin-Shtrikman bounds

Hashin-Shtrikman bounds [18, 19] for e�ective properties of composites is perhaps
the most celebrated result in the theory of composites: most books on compos-
ite discuss them, and a Google search on them brings up more than 40,000 hits.
The bounds state that the e�ective conductivity k� of any isotropic mixture of sev-
eral isotropic conducting materials satis�es certain inequalities independently of the
structure of a composite. In the two-dimensional case, the lower kL and upper kU
bounds are

kL � k� � kU : (1.1)

Here

kL = �k1 +H0; H0 =

 
NX
i=1

mi

ki + k1

!�1
; (1.2)

kU = �kN +HU
0 ; HU

0 =

 
NX
i=1

mi

ki + kN

!�1
; (1.3)

k1 < k2 < : : : kN are conductivities of the materials (materials), andm1 � 0; : : : ;mN �
0 (m1 + : : :+mN = 1) are their volume fractions.

These bounds and their anisotropic extensions are exact for two-material com-
posites (mixtures): There are microstructures that explicitly realize them for all
values of k1; k2 and m1 [18, 24, 37]. For multicomponent composites, they are ex-
act only if volume fractions mi of materials are in certain intervals, but not for all
composites. The lower bound is de�nitely not exact for small fractions m1 of the
\best" material k1. Indeed, it depends on k1 even in the limit m1 = 0, as it was
pointed by Milton [29]. Clearly, this is impossible because k1 is not presented in
the composite. Therefore the bound is rough and can be improved for su�ciently
small m1. Moreover, the inaccuracy of the multimaterial bound can question the
established results for two-material bound. Indeed, an in�nitesimal amount of an
unaccounted material with lowest conductivity can signi�cantly change the bound.
Assume, for example, that two materials with conductivities k2 = 1 and k3 = 3 are
mixed in the equal fractions (m2 = m3 = :5). The lower Hashin-Shtrikman bound
(1.2) is kL = 1:667. A formal addition to the mixture a material with conductivity
k1 = :1 and zero volume fraction m1 = 0 changes the bound to kL = 1:5238. Of
course the di�erence between the two formulations is only semantic. The fact that
the Hashin-Shtrikman bound is loose in a region of parameters and is exact outside
this region suggests that some inequality constraints are missing in its derivation.
These constraints might become active in that region.
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1.2 Some previous work

Since Hashin and Shtrikman suggested the bounds for e�ective properties [18] in
1963, the method was extended in several directions. The contemporary approach
to geometrically independent bounds was suggested in eighties in [23, 24, 26, 37],
generalized in [27, 20, 30, 6] and other papers. Milton [30] called ittranslation
method. It allows for obtaining bounds for e�ective properties of anisotropic con-
ducting, elastic, and viscoelastic composites and polycrystals. For references, we
refer to books and reviews [12, 9, 28, 10] and references therein. The approach is
based on investigation of nonconvex variational problem that describes the prob-
lem of bounds. The references can be found in books [9, 28, 14]. The translation
bounds are proven to be exact for two-material mixtures and polycrystals, but not
for general multimaterial composite, as it evident from the above example.

The work was done to extend the technique of the bounds to multimaterial
composites. Nesi [33] used an additional inequality to improve the bounds. The
inequality states (see [5]) states that det(ruajrub) � 0 where ua and ub are two
solution of conductivity problem in an inhomogeneous periodicity cell, exposed to
two di�erent external �elds. The inequality is valid independently of optimality of
the structure of the composite. Adding this inequality to the translation method,
Nesi improved Hashin-Shtrikman bound [33]. Later, the structures have been found
in [9] that attain Nesi's bound in an asymptotic case when one material has in�nite
conductivity. Simultaneously, evidences were provided that the bound is not exact
in the general case. It does not satisfy the correct asymptotic. In the current paper,
we use several ideas of Nesi's approach.

The mathematical foundations of multiwell bounds were investigated. Smyshlyaev
and Willis [34] formulated the three-well problem as the problem for vector-valued
H-measures. Bhattacharya and Dolzmann [8] found the quasiconvex hull of multi-
well Lagrangian. Talbot, Willis, and Nesi [36] suggested an improvement of Hashin-
Shtrikman bounds. Barbarosie [7] expanded Milton's structures to the case of in�-
nitely many materials.

The �rst optimal three-material structure was found by Milton [29] who consid-
ered two kinds of Hashin-Shtrikman coated circles [18], mixed together. The struc-
tures realize the Hashin-Shtrikman bound (a.k.a the isotropic translation bound)
in a region of parameters where the volume fraction m1 of the best material �1 is
larger than a threshold value. Lurie and Cherkaev [26] formulated an optimization
problem and found the a di�erent type of optimal structures: the multi-layer coated
circles. The solution is topologically di�erent from the solution found in [29]. Ef-
fective conductivity of both structures realizes the bound in the range where the
structures are geometrically possible, and then deviates from the bound. Milton and
Kohn [31] extended earlier Milton's result [24] to anisotropic composites by using
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second-rank matrix laminates. All these structures match the bound in a range of
volume fractions n1 > m0

1 and do not match correct asymptotic when m1 ! 0. This
suggested that some unaccounted inequalities become active for small m1.

Meanwhile, miscellaneous facts concerning optimal multimaterial composites
were collected. Cherkaev and Gibiansky [11] found three-component structures
of extreme anisotropy whose properties signi�cantly di�er from the two-material
ones: when the e�ective conductivity in x-direction is equal to harmonic mean of
mixing materials' conductivities, the conductivity in perpendicular direction can be
made smaller than arithmetic mean of them. The necessary conditions technique
for examining �elds in multimaterial composites was worked out [9] following the
approach suggested by Lurie [21, 22] and Murat [32] in 1970s. Using this technique,
the range of �elds in optimal composites were investigated in [9, 13], and constraints
on the range of �elds in an optimal structure were established.

Gibiansky and Sigmund [15] discovered a new class of three-material structures
that signi�cantly expanded the known region of attainability of Hashin-Shtrikman
bound. Recently, Albin, Cherkaev, and Nesi found new optimal anisotropic three-
material laminates for two-dimensional conductivity, [4, 3]. New optimal three-
material structures for three-dimensional conductivity were described by Albin and
Cherkaev in [2]. These structures realize Hashin-Shtrikman bounds and anisotropic
translation bounds in a larger range than it was known before (they are discussed
below, in Section 8.1). Some hints on the optimal values of �elds in materials outside
of optimality of Hashin-Shtrikman bound were revealed by Albin in [1] by numerical
optimization of microstructures.

Contents of the paper In this paper, we derive new bounds of isotropic e�ec-
tive conductivity that complement Hashin-Shtrikman bounds. In order to establish
them, we analyze assumptions on admissible microstructures and introduce a con-
strain on �elds in them, called rank-one connectedness. Section 2.3 describes the
set of admissible microstructures and explains the rational of choosing it. We also
�nd structures that explicitly realize the bounds of conductivity of three-component
composites for all values of volume fractions and conductivities of components.

Section 2 describes conductivity of inhomogeneous body, a corresponding varia-
tional problem, and assumptions. Section 3 outlines the known bounds (by the poly-
convex envelope) and establishes inequalities for the �elds in optimal two-component
structures. Section 4 introduces new bounds by localized polyconvexity, and works
out the algebra of new bounds. The constraint for �elds in optimal structures is
discussed in Section 4.4. These constraints are used in Section 5 to derive an ex-
act lower bound for e�ective conductivity of a multimaterial conducting composite.
Section 6 discusses generalization: the upper bound (Section 6.1) and anisotropic
bounds (Section 6.2). Section 7 gives an explicit description of the bound for a

5



three-material composite. Section 8 determines optimal three-material structures
which conductivity match the bound. Appendix describes the found parameters of
optimal structures in an asymptotic case k3 =1.

2 Periodic conducting composites

2.1 Equations

Periodic cell Consider the plane divided into periodic system of unit squares.
Each periodicity cell 
, (
 = f(x1; x2) : 0 � x1 � 1; 0 � x2 � 1g = 1) is divided
into N parts 
i, 
 =

S

i and each part is occupied with an isotropic conductor of

conductivity ki. Denote the dividing curves between 
i and 
j as @ij . Note that
domains 
i are not necessary connected.

The variable conductivity k(x) within the cell is

k(x) =
NX
i=1

�i(x)ki (2.1)

where x = (x1; x2) and �i is the characteristic function of subdomain 
i:

�i(x) =

(
1 if x 2 
i

0 if x 62 
i
: (2.2)

The area of subdomain 
i is called volume fraction mi of material ki:

mi = k
ik =
Z

i

dx =

Z


�i dx: (2.3)

Fractions mi are assumed to be strictly positive and they sum up to one.

mi > 0;
NX
i=1

mi = 1: (2.4)

Conductivity Assume that a homogeneous external �eld Ea is applied to the
composite along x1-axis causing potential ua(x) inside. Potential ua satis�es the
following conditions:
(i) ua is harmonic in connected components of 
i, because k(x) = ki is constant
there.

r2ua = 0 in 
i; r � k(x)rua(x) = 0 in 
; (2.5)
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We notice that magnitude jruaj of a harmonic in 
i �eld ua reaches its supremum
on its boundary @
i,

arg
�
supx2
i

jrua(x)j
�
2 @
i; i = 1; : : : ;N: (2.6)

(ii) Gradient rua(x) is 
-periodic and its average equals to the applied �eld EaZ


rua dx = Ea; rua(x) is 
-periodic; (2.7)

(iii) Conditions on boundaries @pm between domains 
p and 
m, p;m = 1; : : : N; p 6=
m, are satis�ed �

@ua
@�

�p
m

= 0 on @
pm; (2.8)

and �
k
@ua
@n

�p
m

= 0; on @
pm: (2.9)

Here, [z(s)]pm denotes the jump of a function z on the point s at the boundary 
pm,

[z(s)]pm = lim
x!s;x2
p

z(x)� lim
x!s;x2
m

z(x)

and n and � are the normal and tangent to @pm. Conditions (2.8) and (2.9) express
the continuity of potential ua and normal component of the current, respectively.
We assume that n and � are de�ned almost everywhere on @pm.

Energy The energy �a of the periodicity unit cell 
 in an external �eld Ea is
equal to

�a =
1

2
inf

ua2Ua

 Z



NX
i=1

�ikiruTarua dx
!

(2.10)

where

Ua =
�
ua :

Z


rua dx = Ea; rua is 
-periodic ; u 2W 1

2 (
)

�
: (2.11)

2.2 E�ective Properties

The energy is a quadratic function of magnitude of applied �eld Ea,

�a =
1

2
k�(�)11ET

a Ea: (2.12)
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Coe�cient k�(�)11 represents the overall conductivity of the cell subjected to the
�eld Ea. It is the entry of e�ective tensor K�(�); it depends only on characteristic
function � = (�1; : : : ; �N ) of layout. In order to characterize tensor K� in more
details, we compute the sum of energies of a cell subjected to two orthogonal external
�elds Ea and Eb. In addition to �a(ua), we consider the energy �b and potential
ub 2 Ub de�ned similarly to (2.11) but associated with an external �eld Eb instead
of Ea. We also assume that Eb is orthogonal to Ea, E

T
a Eb = 0.

The sum of the energies can be written as

J(e0; �) = �a +�b =
1

2
inf
u2U

Z



 
NX
i=1

�iki Tr (ruTru) dx
!
: (2.13)

Here, u is vector of potentials u = [ua; ub], U = UaLUb, and ru is a 2� 2 matrix
with columns rua and rub,

ru = (ruajrub) =
 

@ua
@x1

@ub
@x1

@ua
@x2

@ub
@x2

!
: (2.14)

Entries (ru)ij = @ui
@xj

2 L2(
) are 
-periodic, and matrix ru satis�es integral

conditions (see (2.11)):

U :

Z


ru dx = e0; e0 = (EajEb); ET

a Eb = 0: (2.15)

Here, e0 is a symmetric matrix of external �elds with eigenvalues equal to jEaj and
jEbj and eigenvectors oriented along x1 and x2 axes, respectively.

The left-hand side of (2.13) de�nes the e�ective conductivity tensor K�(�). It
is a quadratic form of (e0)kj with K� entries

J(e0; �) =
1

2
Tr
h
K�(�)e0eT0

i
: (2.16)

Because e0 is arbitrary and K�(�) that depends only on layout (structure) �, (2.16)
allows for de�ning K�.

Stationarity of J(e0; �). Rank-one connectedness Consider variational
problem (2.13). Minimization of J(e0; �) with respect of u 2 U leads to the Euler-
Lagrange equations (compare with (2.5), (2.7))

r � k(x)ruj = 0 in 
;

Z


rujdx = Ej ; ruj are 
- periodic; j = a; b: (2.17)
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At the dividing curve @mp between the domains 
m and 
p, the vector potential u
satis�es the main boundary conditions similar to (2.8)�

@u

@�

�m
p

= 0 on @
mp (2.18)

and the variational boundary conditions similar to (2.9) which follow from the sta-
tionarity of J(e0; �) �

k
@u

@n

�m
p

= 0; on @
mp: (2.19)

These conditions imply the rank-one connectedness of the matrices ru and kru on
the opposite sides of boundary @mp:

rank [ru]mp = 1; rank [kru]mp = 1: (2.20)

Let denote the set of values of matrices e = ru in 
i as 	i,

	i = fru(x); x 2 
ig (2.21)

Condition (2.20) implies that sets 	m and 	p are rank-one connected:

9em 2 	m; 9ep 2 	p : det(em � ep) = 0 (2.22)

Optimal composites A layout � (or a limit of a sequence f�sig) that minimizes
the energy J(e0; �) with a given external �eld e0 is called an optimal composite.
Minimal energy is still a quadratic function of entries of e0 and is de�ned by a
tensor KL of the lower bound (see [9]).

inf
�i as in (2:3);(2:4)

J(e0; �) =
1

2
Tr (KLe0e

T
0 ): (2.23)

It is assumed that � satis�es (2.3), (2.4) or that the compared structures keep the
volume fractions.

E�ective conductivity tensor K� of any structure is bounded by KL as follows

eT0 (K�(�)�KL)e0 � 0 8� as in (2:3); (2:4); 8e0: (2.24)

The di�erence K�(�)�KL is nonnegative de�ned, in particular

det(K�(�)�KL) � 0 8� as in (2:3); (2:4); 8e0: (2.25)

If jEaj = jEbj = s or e0 = sI, optimal structures are isotropic, see for example
[9, 28].

KL = kLI if e0 = sI: (2.26)
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Then, the bound kL for isotropic conductivity k� becomes:

kL =
1

s2
inf
�i
J(sI; �): (2.27)

Bound kL depends only on ki and mi, it de�nes the lower isotropic component of
G-closure - set of all e�ective tensors of composites with �xed volume fractions mi

of materials, see [23, 24, 9],

kL(mi; ki) � k�(�) 8� as in (2:3): (2.28)

2.3 Relaxed rank-one connectedness

Our goal is to describe optimal composites or optimal subdomains 
i that minimize
J(e0; �), (2.16). A minimizing sequence may contain domains 
i of arbitrary shape
and connectedness, moreover, these domains may become in�nitely wiggly fractals,
as in [6]. Dealing with such sequences, we assume that conditions similar to (2.6)
and (2.22) are satis�ed even when minimizing structures tend to a fractal. In the
last case, we assume relaxed boundary conditions that correspond to the situation
when a \larger" domain 
i neighbors a �ne-scale mixture of other materials, and the
scales are separated. Namely, we assume that �eld ei at the boundary of 
i must be
in rank-one connection with a convex combination of the �elds in the remaining part
of 
 that represent an averaged �eld at the other side of the boundary. Therefore,
	i sets must satisfy the conditions

9 ei 2 	i; 9 ec = C
0
@[
k 6=i

	k

1
A : det(ei � ec) = 0 (2.29)

of relaxed rank-one connectedness. Here, C(X) means the convex envelope of X.

Admissible microstructures Condition (2.29) states that there exist an al-
most everywhere di�erentiable boundary � which separates domain 
i �lled with ki
from an external domain 
ext that does not contain ki. This condition follows from
continuity of potential u and the assumed local di�erentiability of �. It excludes
some fractal microstructures that contain ki in in�nitely many scales. To the au-
thor's opinion, such constraints on microgeometry are necessary to avoid ambiguity
in the basic de�nitions. For instance, a fractal minimizing sequence of microstruc-
tures (like laminates of in�nite rank) requires consideration of Laplace equation
(2.5) and continuity of u in domains separated by a generalized curve which may
densely cover the whole periodicity cell. Boundary condition (2.8) that follows from
the continuity of u should be rede�ned on such fractals and checked for consistency
with major physical assumptions.
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Particularly, relaxed rank-one connectedness corresponds to continuity of a po-
tential in the sequential laminates of any rank. De�nition of these sequences of
structures (see, for example, [24, 9, 28]) includes an assumption of the separation
of scales of laminates of di�erent rank. Inside any laminate scale, the piece-wise
constant �elds satisfy the boundary and equilibrium conditions. On a larger scale
boundary between slices of "smaller scale" laminates, the conditions are satis�ed
for the averaged in smaller scales �elds in accordance to (2.29). This scheme implies
an assumption that the ratio of the scales tends to zero.

Notice that (2.29) assumes that domain 
ext does not contains material ki in
a smaller scale but it does not requires that all microstructural boundaries are of
this type. This condition is valid on the boundary of a laminates which contain
a material ki in the smallest scale. Any sequential laminate satis�es (2.29) if the
rank of lamination is arbitrarily large but �nite. Still, (2.29) excludes some fractal
sequences of self-repeated layouts. If these sequences are the limits of sequential
laminates, (2.29) could be relaxed. For instance, the functional may be adjusted by
adding penalization for its violation.

Remark 2.1 (Underlying �nite-di�erence equation could be ambiguous)

The necessity of some constraints on admissible microstructures is clear from examin-
ing the underlying �nite-di�erence equation. Partial di�erential equation (2.5) in 
i is
conventionally viewed as a limit of a �nite di�erences equation in which the potential
is de�ned at knots of a simple lattice. This consideration implies an assumption that
the characteristic scale of 
i is much larger than the distance between the knots in the
di�erence equation. However, there is no means to keep the scales separated when the
functional is minimized unless and additional assumptions (like additional terms in the
energy) are introduced.

Alternatively, one may allow to assign conductivity ki at every knot of lattice,
thereby introducing one scale for both the structure and potentials. Then, there exist
checkerboard-type structures without clear boundaries and domains 
i without interiors.
The corresponding di�erence equations do not tend to (2.5), (2.8) and an additional
convention is required for interpreting of the limiting equations.

In order to avoid these ambiguities in de�nitions, some constraint about the bound-
ary � must be imposed. The used here condition (2.29) is an example of such
constraint.
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2.4 Notations

For the next consideration, it is convenient to introduce a matrix basis for 2 � 2
matrices e = ru. We introduce a convenient basis (see, for example [9, 4])

a1 =
1p
2

�
1 0
0 1

�
; a2 =

1p
2

�
1 0
0 �1

�
;

a3 =
1p
2

�
0 1
1 0

�
; a4 =

1p
2

�
0 1
�1 0

�
:

Matrices ai are orthonormal with respect to scalar product Tr (aia
T
j ). One can

check that Tr (aia
T
j ) = �ij , where �ij is the Kronecker symbol. Any 2� 2 matrix

Z is represented by its coe�cients in that basis as follows

Z =
1p
2
[S(Z)a1 +D�(Z)a2 +D��(Z)a3 + V (Z)a4]

where

S(Z) =
1p
2
(Z11 + Z22) ; D�(Z) =

1p
2
(Z11 � Z22) ;

D��(Z) =
1p
2
(Z12 + Z21) ; V (Z) =

1p
2
(Z12 � Z21) : (2.30)

One can immediately verify that

Tr (ZTZ) = S2 +D2 + V 2; det(Z) =
1

2
(S2 + V 2 �D2) (2.31)

where
D2 = D2

� +D2
��: (2.32)

Notice that S(Z), D(Z) and V (Z) are invariant to rotation of Z.
If Z is symmetric, then V (Z) = 0. If Z is proportional to unit matrix, Z = sI,

then V (Z) = D(Z) = 0, and S(Z) =
p
2s.

In particular, matrix ru of gradient u is represented as

ru = S(ru)a1 +D�(ru)a2 +D��(ru)a3 + V (ru)a4
where

S(ru) = 1p
2

�
@ua
@x1

+ @ub
@x2

�
; D�(ru) = 1p

2

�
@ua
@x1

� @ub
@x2

�
;

D��(ru) = 1p
2

�
@ua
@x2

+ @ub
@x1

�
; V (ru) = 1p

2

�
@ua
@x2

� @ub
@x1

�
:

(2.33)

Matrix e = ru can be represented by its rotationally invariant components (S;D; V )
and the angle of orientation of the labor system.
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3 Harmonic Mean and Translation Bounds

3.1 Harmonic Mean Bound

In this section, we recall the derivations of the known bounds for the e�ective
properties and comment on requirements to optimal �elds.

Energy of an optimal composite In the notations (2.31), the energy of an
isotropic composite is

J(e0; �) = J(
p
2S0I; �) = k�S2

0 : (3.1)

The energy is equal the sum of energies in the mixed materials. We write, using
(2.31)

k�S2
0 = 2 inf

e(x)

1

2

NX
i=1

ki

Z

i

Tr
�
eT (x)e(x)

�
dx

= inf
S;D;V

NX
i=1

ki

Z

i

(S2 +D2 + V 2)dx: (3.2)

It is convenient to separate the �elds in the subdomains 
i into their mean values
Si; Di; Vi and deviations, rewrite the energy as follows:

k�S2
0 = min

S1;Di;Vi

NX
i=1

miki(S
2
i +D2

i + V 2
i ) +N ; (3.3)

where

Si =
1

k
ik
Z

i
S(x) dx; Di =

1

k
ik
Z

i
D(x) dx; Vi =

1

k
ik
Z

i
V (x) dx; (3.4)

N = inf
S(x);D(x);V (x)2	

NX
i=1

Ni; (3.5)

Ni = ki

Z

i

h
(S(x)� Si)

2 + (Di �D(x))2 + (Vi � V (x))2
i
dx: (3.6)

The mean values are subject to integral constraints

NX
i=1

miSi = S0;
NX
i=1

miDi = 0;
NX
i=1

miVi = 0: (3.7)

and deviations are free of them. The only nonhomogeneous constraint in (3.7) is
imposed on the average of S-components.

13



Harmonic mean bound The lower bounds are obtained by enlarging the set
of minimizers. If di�erential constraints (2.17). (2.18) on minimizers are neglected,
the minimum decreases. Assume that these constraints are omitted so that e(x)
is a matrix with entries eij 2 L2(
). Then, the energy minimum corresponds to
piece-wise constant isotropic �elds in each domain 
i,

S(x) = Si; D(x) = Di V (x) = Vi 8x 2 
i; i = 1; : : : ; N; (3.8)

because the integrals in (3.6) are convex functionals of S;D; V . The variational
problem becomes an algebraic one: N = 0 in (3.5).

Further, we �nd:

Vi = 0; Di = 0; i = 1; : : : ; N: (3.9)

Minimizing the right-hand side of (3.3) over Si, subject to (3.7), we compute

Si =
1

ki
HhS0; i = 1; : : : ; N; Hh =

 
NX
i=1

mi

ki

!�1
: (3.10)

Expression (3.2) gives the harmonic mean bound for e�ective conductivity k�,

k� � khL = Hh: (3.11)

Notice that �elds (3.8)-(3.9) are not compatible. Since e is constant in 
i and
proportional to unit matrix, a tangent component of e is discontinuous at the bound-
aries where S-component jumps, (3.10). This contradicts (2.20) or (2.29). Therefore
the bound (3.11) is not attainable by a structure.

3.2 Translation or Hashin-Shtrikman bound

Integral constraint and translated energy A polyconvex envelope [20,
24, 37, 14] is also obtained by neglecting di�erential constraints e(x) = ru, and
replacing �elds in 
i by their averages. However, the di�erential constraints are
indirectly accounted for via quasia�nity of det(ru),

det(e0) =

Z


det(ru)dx; 8u 2 U : (3.12)

Adding this equality, multiplied by a real number t called translation parameter, to
both sides of (3.2) we write

J(e0; �) + t det(e0) = inf
e(x)=ru

1

2

NX
i=1

Z

i

h
ki Tr

�
eT (x)e(x)

�
+ t det e(x)

i
dx (3.13)
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We transform the left-hand side of (3.13) to the form

J(e0) + tdet(e0) =
1

2
(k� + t)S2

0 : (3.14)

recalling that the applied �eld e0 =
1p
2
S0I and the corresponding tensor KL = kLI

are isotropic.
To obtain the bound, we again relax the right-hand side of (3.13) by omitting the

di�erential constrain e = ru and treating e as a matrix with entries from L2(
),
as before. The minimum in these enlarged class of minimizers is lower, and the
equality (3.13) is replaced by an inequality

1

2
(k� + t)S2

0 �
1

2
W poly

t (e0) (3.15)

where W poly
t is a solution of a �nite-dimensional minimization problem

W poly
t = inf

e2E

NX
i

Z

i

h
(ki + t)

�
S2(x) + V 2(x)

�
+ (ki � t)D2(x)

i
dx: (3.16)

(here, decomposition (2.31) is used to transform the right-hand side of (3.13)).
Minimizers S;D; V are subject to integral constraint

E =

�
e :

Z


S(x) dx = S0;

Z


D(x) dx = 0;

Z


V (x) dx = 0

�
:

W poly
t is a quadratic function of S0, as the left-hand side of (3.15). Since S0 is

arbitrary, we obtain a family of inequalities

k� � kL =
W poly

t

S2
0

� t 8t 2 R1: (3.17)

that depends on parameter t 2 R. Translation bound (or polyconvex envelope)
corresponds to maximum of right-hand side of (3.17) with respect of t.

Range of translation parameter The integrals in W poly
t (3.16) are bounded

as

1

mi

Z

i

h
(ki + t)

�
S2(e(x)) + V 2(e(x))

�
dx+ (ki � t)D2(e(x))

i
dx

� Gpoly
i (Si; Di; Vi; t) (3.18)

where Si; Di; Vi are de�ned in (3.4), i = 1; : : : ; N ,

Gpoly
i =

(
(ki + t)(S2

i + V 2
i ) + (ki � t)D2

i if 0 < t � ki
�1 if t > ki

: (3.19)
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Indeed, when coe�cients ki + t and ki � t are nonnegative, the integral in (3.18) is
a convex functional of S;D; V . Its minimum is achieved when S(x); V (x) and D(x)
are constant in 
i and equal to their mean values.

When k1 � t = 0, the right-hand side of (3.18) is independent of D2(x), x 2 
1.
The extremal �elds S(x); V (x) are constants, as before.

When ki � t < 0, the integral in (3.18) is a concave functional of D(x). The
improper in�mum of that integral (see (3.19)) corresponds to a unbounded mini-
mizing sequence fDsg such that the magnitude of fDsg tends to in�nity while the
average of D over 
i is zero,Z


i

(Ds)2dx!1;

Z

i

(Ds)dx = 0:

Because of this feature, the lower estimate (3.18) is nontrivial only if t 2 [0; k1].

Translation (Hashin-Shtrikman) bound Let t 2 [0; k1]. Proceeding as

before, we �nd that optimal values of Di and Vi are zeros, Di = 0, Vi = 0 andW poly
t

becomes

W poly
t = min

Si2S
�; � =

NX
i=1

mi(ki + t)S2
i (3.20)

where

S :

(
S1; : : : ; SN :

NX
i

miSi = S0

)
: (3.21)

Performing minimization over Si, we compute optimal values of Si (compare with
(3.10))

Si =
1

ki + t
H0(t)S0: (3.22)

where

H0(t) =

 
NX
i

mi

ki + t

!�1
: (3.23)

Then we compute �,

� = H0(t)S
2
0

and arrive at a lower bound (3.17)

k� � B(t) 8t 2 [0; k1]; B(t) = (�t+H0(t)) : (3.24)
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Finally, we choose t 2 [0; k1] (see (3.19)) to maximize the lower bound B(t). A
straightforward calculation shows that optimal value of t is k1 - the end point of its
permitted interval.

kL = max
t2[0;k1]

(�t+H0(t)) = �k1 +H0(k1): (3.25)

We arrive at the Hashin-Shtrikman bound (1.2) a.k.a. translation bound.

Fields in translation-optimal structures If t = k1, the left-hand side of
(3.18) is independent of D(x) if x 2 
1 because the coe�cient (k1 � t) by D2

vanishes, and
Gpoly
i (S1; D; 0; k1) = constant(D):

Optimal D-components areZ

1

D(x)dx = 0; D(x) is unde�ned 8x 2 
1; (3.26)

D(x) = 0; 8x 2 
� 
1: (3.27)

The value of D(x); x 2 
1 can be arbitrary. In order to satisfy the constraint (3.7)
on the mean �eld, the average D1 must be zero D1 = 0. Optimal S-components are
ordered and constant in each subdomain,

Si = �iS0; �i =
1

ki + k1
H0(k1) i = 1; : : : ; N: (3.28)

Notice that the polyconvex bound admits a minimizer with nonzero D-component
in 
1, unlike the harmonic mean bound. This 
exibility in minimizers makes the
bound attainable by a structure in which �elds in all but the �rst material are
isotropic and incompatible Di;= Vi = 0; i = 2; : : : N . The D-component of the
�eld in the �rst material may vary with x 2 
1, providing a connectedness between
other materials so that (2.20) is satis�ed at all interfaces, see [4] and the discussion
below. In an optimal structure, domain 
1 is placed between the other domains
which have mutually incompatible �elds.

In other terms, sets 	i, i > 1 of ranges of ru in 
i are rank-one connected to
	1 set, see (2.22), (2.29). Indeed, sets 	i, i > 1, consist of one isotropic matrix
each: 	i = fru : S = Si; D = 0; V = 0g, but set 	1 consists of all symmetric
(V=0) matrices with a �xed trace and arbitrary D-component, 	1 = fru : S =
S1; D- arbitrary; V = 0g. The equality (2.18) of the tangent components of ru in

1 and a neighboring subdomain 
i is expressed as Si = S1+D1 in notations (2.33).
By choosing a proper value of D in 	1, one can make sets 	1 and 	i, i > 1 be
rank-one connected.
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Remark 3.1 Translation bound assumes a special role of the �rst phase k1 because
e 2 	i connects all �elds. When fraction m1 of it tends to zero, m1 ! 0, the �elds
in remaining phases lose connectedness and the bound become loose like the Harmonic
mean bound. This causes the paradox of Hashin-Shtrikman bound mentioned in the
Introduction. Algebraically, we observe that translation parameter t is less than or equal
to k1 regardless of the volume fraction of k1. Correspondingly, the bound depends on
k1 even in the limit m1 ! 0.

Remark 3.2 The translation bound for an anisotropic conductivity tensor K�

2
detK� � k21
TrK� � 2k1

� H0(k1) 8K� in G-closure (3.29)

is obtained by the same method (see [24, 31]) and degenerates into (1.2) when K� =
k�I. This time, the average �eld e is not proportional to the unit matrix, D(e) 6= 0,
but is related to the degree of anisotropy of bounding tensor K�. Notice that B0(k1)
and H0(k1) keep their forms if D1 6= 0 which is the case for anisotropic e0 and K� (see
below, Section 6.2). In this case, the optimal �elds are similar to (3.26), (3.27) but
D-component in 
1 has the average equal to D1 = 1

m1
D(e). The D-components in

the other materials are zero. The translation bound is obtained similarly, it has a form
[24],

3.3 Fields in Two-material Optimal Structures

Supporting points Consider a two-material optimal isotropic composite from
the material km and ki, km > ki. It satis�es the translation bounds: The �elds in the
structures satisfy conditions (3.26), (3.27), (3.28). Here we show that D-component
of the �eld in 
1 is bounded,

D2 � (Si � Sm)
2 8 in 
i: (3.30)

In 
m, the �eld is isotropic: S(x) = Sm = �;D(x) = 0; V (x) = 0. The corre-
sponding potentials are a�ne functions

ua =
1

2
�mS

2
0x1; ub =

1

2
�mS

2
0x2; 8x 2 
m:

At the boundary @im, the continuity conditions (2.18), (2.19) are satis�ed. Since
the �eld in 
m is constant and isotropic, the �eld component S;D; V at 
i-side of
the boundary satis�es the conditions

S �D = Sm; S +D =
km
ki
Sm; V = 0 on @im
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or

D2 = (S � Sm)
2; S =

ki + km
2ki

Sm; V = 0 on @im (3.31)

showing that S(ru) and D(ru) are constant at the boundary @im regardless of the
orientation of its normal.

In domain 
i, the translation optimality conditions (3.26)-(3.28) state that S =
Si = constant; V = 0. Using (2.30), these conditions are represented through
potentials ua; ub as

@ua
@x1

+
@ub
@x2

= 2�i;
@ua
@x2

� @ub
@x1

= 0 8x 2 
1: (3.32)

Equations (3.32) are reminiscent of Cauchy-Riemann conditions. They state that
ua and ub can be represented as sum of an a�ne function of x1; x2 and the real and
imaginary parts of an analytic in 
i function û of x1 + ix2, respectively,

ua = �ix1 + <(û); ua = �ix2 + =(û): (3.33)

This and similar representations have been used in [38, 28, 17] to �nd families of
optimal structures.

Absolute value jrûj of gradient of an analytic function reaches its maximum at
the boundary of 
i. Using (3.32), we exclude derivatives of ub and express detru
through gradient rua of a harmonic in 
i function ua,

det(ru) = @ua
@x1

�
�@ua
@x1

+ 2�i

�
�
�
@ua
@x2

�2

= �kr(ua � �1x1)k2: (3.34)

The right-hand side of (3.34) reaches its minimum at the boundary @im and so does
det(ru). Because of decomposition (2.31), det(ru) = S2 + V 2 � D2. Optimality
conditions require that V (x) = 0; S(x) = Si = constant; x 2 
i, therefore

detru(x) = �D2(x) + S2
i 8x 2 
i: (3.35)

Correspondingly, D(x) reaches its maximum at @im which proves (3.30).
Relations (3.26), (3.27),(3.28), and (3.30) state that �elds in a two-phase opti-

mal structures are ordered: Di�erence between �elds in 
i and 
m is nonnegative
de�ned:

e(x)� e(y) � 0) det(e(x)� e(y)) � 0 8x 2 
i; 8y 2 
m: (3.36)

Notice that relation (3.36) holds also for anisotropic two-component optimal struc-
tures. Particularly, it holds for second-rank laminates and for simple laminates.
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Remark 3.3 [Symmetry of �elds in optimal structures] The conclusion of symmetry
of the �elds (V = 0) in optimal structures is based on the orthogonality of applied �elds
E1 and E2 and the symmetry of e0, V0 = 0. If these �elds were non-orthogonal, the
consideration would be similar but formulas would be more bulky. The term

p
S2 + V 2

would replace S in the calculations below.

4 Bound by Localized Polyconvexity

4.1 Boundedness of the Fields in Optimal Structures

Constraints The range of �elds e(x) in optimal multimaterial structures is bounded.
For example, the constraint det e � 0 (see [33, 5]) or

S2 + V 2 � D2 8x 2 
 (4.1)

follows from the di�erential constraints (2.17), (2.18) on the minimizer. The in-
equality (4.1) holds for all structures, whether they are optimal or not. It is used
in Nesi bound [33] to improve Hashin-Shtrikman bound.

The �elds in optimal microstructures satisfy certain additional local optimality

conditions that pointwise restrain the ranges 	i of the �elds in optimal composites.
These conditions, implemented into the polyconvex envelope procedure, result in
better bounds. We call this lower estimate localized polyconvexity.

Remark 4.1 An example of constraints are the mentioned local optimality conditions
by structural variation [21, 22, 32, 9]. They provide uniform inequalities for the �elds
in an optimal structure. The structural variation is performed by interchanging two
in�nitesimal elliptical inclusions from materials ki and kj . These inclusions are placed
in arbitrary points of subdomains 
j and 
i, respectively, and the increment of J(�; e0)
is computed. The increment is nonnegative, if the tested con�guration is optimal. This
condition leads to an inequality that constrains values of �elds e 2 	i and e 2 	j in
arbitrary points of 
i and 
j , respectively. It uniformly restricts the �elds in 
i and 
j .

Ordering and boundedness Fields in the materials in optimal structures are

ordered: Norms keik =
q

Tr (eTi ei) satisfy inequalities

keik 2 [�i+1; �i] (4.2)

where �i are ordered constants, 0 � �N � : : : � �1 < 1. These inequalities can
be proven if the variational problem (2.23) is rewritten as a multiwell problem (see,
for example [9]) with the Lagrangian

F = min
i=1;:::N

�
1

2
kikei+1k2 + 
i

�
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that depends only on e. Here 
i are Lagrange multipliers by constraints (2.3),
ordered as follows 
1 > : : : ; 
n. The ordering constrains �elds in all materials but
the �rst one.

Field in 
1 is bounded as well. Indeed, potential ua in domain 
1 is harmonic,
therefore the norm of its gradient reaches its maximum at the boundary @
1 (see
(2.6)). At the other side of this boundary, where other materials are located, rua is
bounded, see (4.2). The jump conditions (2.18) requires thatrua at @
1 is bounded
too; therefore it is bounded everywhere in 
1. The same is true for rub. Therefore,
ke(x)k2 = S2 +D2 + V 2 is bounded everywhere in 
.

Remark 4.2 The boundedness of ke(x)k geometrically restricts optimal multiphase
microstructures. Particularly, boundaries with corners are excluded and structures where
three or more materials meet in isolated points. In such structures, �elds are singular in
a neighborhood of these special points.

An account for constraints on 	i-sets improves the bounds on e�ective proper-
ties. To derive the bound, we explore a simple lemma.

Lemma 4.1 Let � be a real parameter, 
 a bounded domain, and v(x) - an integrable
function in 
. Assume that v(x) is bounded in 
 and its mean value is �xed,

kv(x)kL1 � vmax;
1

k
k
Z


v(x)dx = v0: (4.3)

Here v0, vmax are real numbers and

jv0j � vmax: (4.4)

Then

min
v(x) as in(4:3)

�
1

k
k
Z


�v2dx

�
=

(
�v20 if � � 0
�v2max if � � 0

: (4.5)

Indeed, if � � 0, integrant �v2 is a convex function of v, therefore the minimum in
left-hand side is achieved at a constant minimizer v(x) = v0. The value of minimum
and the minimizer are independent of vmax. If � � 0, integrant �v2 is a concave
function of v, therefore the minimum corresponds to piece-wise constant v(x) that
alternates its extreme values

vopt(x) = vmax or vopt(x) = �vmax 8x 2 
:

Measures of the subdomains where and vopt = �vmax are equal to k
kmA and
k
kmB respectively. Here mA 2 [0; 1] is a volume fraction of the domain where
vopt = vmax and mB = 1 � mA. The value of minimum is independent of mA.
The average value of minimizer can be made equal to v0 by a proper choice of these
measures, mA = v0+vmax

2vmax
Then (4.3) is satis�ed.
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4.2 Optimal Constrained Fields and Bounds

Assume that ranges 	i of �elds in an optimal structure are described by inequalities
�i(S;D; V ) � 0. Below in Section 4.4, we describe these constraints. Here, we
work out the algebra of the bounds if the constraints are applied. We assume that
constraints have the form

V = 0; D2 � �i(S) in 
i (4.6)

where �i are some nonnegative functions. Constraints of ranges of optimal �elds
	i can be implemented into the translation bound derivation, similarly to [33].

We return to the scheme of polyconvex envelope for a multiphase composite,
N � 3 accounting for constrained �elds in an optimal structure. Assume that
�elds in an optimal structure are constrained as (4.6) and let us choose translation
parameter t in (3.24) larger than k1, t > k1. Then some terms in the right-hand
side of inequality (3.16) become nonconvex and constraints (4.6) become active.

First, assume that k1 < t � k2. Consider inequality (3.18) for i = 1. Coe�cient
(k1�t) in front of

R

1
D2dx in the right-hand side is negative. According to Lemma,

the constraint on D2 � �1(S) becomes active and the minimizer takes values

D(x) = ��
1

2

1 (S(x)) 8x 2 
1:

The integral of D2 is estimated asZ

1

D2dx �
Z

1

�1(S)dx = m1�1(S1):

Functions Gi in inequalities (3.18) become

G1 = (k1 + t)S2
1 + (k1 � t)�1(S1); (4.7)

Gi = (ki + t)S2
1 ; i = 2; : : : ; N: (4.8)

Next calculation, performed as in (3.20), gives the expression for H(t) = H1(t) that
di�ers from (3.20) only in the value of G1 that is de�ned in (4.8).

Finally, the most restricted lower bound kL is de�ned by maximum of H0 and
H1. The bound has the form similar to (3.24):

kL = max
t2[k1;k2]

(�t+H(t)) ; H(t) =

(
H0(t) if t = k1;
H1(t) if t 2 (k1; k2]:

(4.9)

Notice that H continuously depends on t. Notice also that t 2 [0; k1) are nonoptimal
(see (3.25)), therefore these values are not accounted for in (4.9).
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Supports of optimal �elds. By assumption, optimal �elds are symmetric,
V = 0. When t < k2, the S and D components are

S(x) = Si; D(x) = 0 8x 2 
i; i > 2;

S(x) = S1; D(x) = ��
1

2

1 8x 2 
1:
(4.10)

The �elds are constant and isotropic is all materials but the �rst. In the �rst
material, D-component of the optimal �eld is not completely de�ned: It can take
one of two values in each point.

When t = k2, D-component is undetermined in 
2, and 
2 plays the same role
as 
1 plays in the translation bound. The optimal �elds are

S(x) = Si; D(x) = 0; 8x 2 
i; i > 2;

S(x) = S1; D(x) = ��
1

2

1 ; 8x 2 
1;
S(x) = S2; D(x)2 � �2; D2(x) is not de�ned 8x 2 
2:

(4.11)

More than three materials When the number of materials is greater than
three, the procedure can be continued. Increase of t leads to increase of the number
of active constraints. When kr < t � kr+1, r constraints are active:

Gi =

(
(ki + t)S2

i � (t� ki)�i(Si) if i < r
(ki + t)S2

1 if r � i � N
(4.12)

�r =
NX
i=1

miGi =
NX
i=1

mi

h
(ki + t)S2

i

i
�

rX
i=1

mi(t� ki)�i(Si); (4.13)

and
Hr(t) = min

Si2S;S0=1
�r: (4.14)

Bound (3.24) for the e�ective properties corresponds to the maximum over t of
the obtained expressions. It becomes

kL = max
r=0;:::;N�1

Br; (4.15)

Br = max
t2[kr;�kr+1]

(�t+Hr(t)) : (4.16)

Optimal �elds are symmetric, V (x) = 0. They are either isotropic (D-component
is zero) or they belong to the boundary of the permitted region (jDj-component is
maximal). If t = kr, the D-component is undetermined in 
r.

S(x) = Si; D(x) = 0; x 2 
i; i = r + 1; : : : ; N
S(x) = Si; D(x)2 = �i; x 2 
i i = 1; : : : ; r � 1

S(x) = Si;

(
D(x)2 = 0 if t < kr
D(x)2 < �2 if t = kr

; x 2 
r

(4.17)
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e

S

D

e a

b

Figure 1: Cartoons of the sets of supports (represented by ellipses) and locations of
supports (small circles) in the localized polyconvexi�cation procedure. Case N = 4,
k2 < t < k3

These �elds are shown at Figure 1.
This procedure excludes optimal values of D. The optimal values Si can be

found from the �nite-dimensional optimization problem (4.14).

Remark 4.3 In localized polyconvexity, the pointwise constraints �i on the optimal
�elds in 
i become active everywhere in these sets when t > ki. The points of 
i are
undistinguishable because the di�erential constraints are not account for.

4.3 Nesi bounds

Nesi [33] used the inequality (4.1) to improve Hashin-Shtrikman bounds. It leads
to constraints

�i = ��
i = S2

i ; i = 1; : : : N: (4.18)

and bound (4.15) becomes a Nesi-type bound, as follows. When t 2 (kn; kn+1],
(n < N � 2), we compute from (4.13), (4.1)

Gi =

(
2kiS

2
i if i < n

(ki + t)S2
i if n � i � N
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minimize � (4.13) over Si and obtain

Hn =

0
@ nX
i=1

mi

2ki
+

NX
i=n+1

mi

t+ ki

1
A
�1

:

The bound has the form (4.15). In Nesi bounds, the optimal D-�elds satisfy the
relations

jDij =
(
Si if i < n
0 if i > n

;

and

jDnj =
(
0 if t � kn+1

unde�ned if t = kn+1
:

Nesi bound is better than translation bound when volume fraction m1 is smaller
than a threshold. However, its asymptotic m1 ! 0 does not show the expected
limit: Hashin-Shtrikman bound for the remaining materials. However, we show in
Section 7 that the bound becomes asymptotically exact when kn !1.

Remark 4.4 Nesi bound is generally not achievable by a structure. Indeed, according
to the bound, an optimal �eld satis�es the relation jD1j � S1 = 0, or det(e(x)) = 0
almost everywhere in 
1. This condition implies that det(ru) = 0 or thatrua andrub
are collinear almost everywhere in 
1. Then, solutions ua and ub are linearly dependent
contrary to (2.15). Therefore, condition (4.1) cannot be satis�ed if kn < 1 and the
bound cannot be exact.

4.4 Extremal constraints

Algebraic form of constraints Geometry of domains 
i can be arbitrary,
therefore the constraints on 	i do not depend on a point's position in these domains.
In particular, it cannot depend on the distance to the boundary, its curvature,
connectedness of 
i, etc, since these can be arbitrary chosen to minimize the energy;
the points in optimal 
i domains are undistinguishable. Constraints on 	i are
expressed only through the values of e in 
i.

Sets 	i depends only on rotational invariants S; V and D of �eld e(x) and are
independent of orientation of its eigenvectors. This feature follows from isotropy
of composites: An optimal structure can be composed of several arbitrarily rotated
fragments of overall isotropic structure, combined in a larger scale. All the �elds are
scaled by magnitude S0 of external �eld and e�ective properties are independent of
it.
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Assume that sets 	i are described by inequalities ��i(e) � 0. The constraints
have the forms

��i(S;D; V;M) � 0 or D2 � ��i(S; V;M) in 
i (4.19)

where M is the vector of volume fractions, M = (m1; : : :mN ). ��i are homogeneous
functions of S;D; V ,

��i(S;D; V;M) � 0) ��i(
S; 
D; 
V;M) � 0; 8
 > 0:

We can assume that S0 = 1. The constraints assume the form

��i(S;D; V;M) � 0 in 
i: (4.20)

Optimality of constraints The translation-type bounds by localized poly-
convexity in Section 4.1 monotonically depend on constraints �i, see (4.14) (the
exception is Hashin-Shtrikman bound where the constraints are nor active). The
bound kL in (4.14) decreases when �i increases,

@kL
@�i

� 0; i = 1; : : : ; N: (4.21)

The translation bound corresponds to the absence of the constraints and is the
least restrictive. Nesi bound is more restrictive, it uses inequalities (4.1). It is
asymptotically (kN ! 1) exact, see Section 8.2. This bound could be further
improved if �i are smaller, see Remark 4.4. The toughest bound corresponds to the
smallest �i � 0. The anisotropic component D of the �eld is unrestricted by the
mean �eld and should be made as small as possible, see (3.6).

The conditions (2.18), (2.20) of continuity of potential u at the boundaries imply
that �i > 0 for some i, that is any structure necessarily includes some �elds with
nonzero D-components. Constraints must allow for relaxed rank-one connectedness
of the sets: Inequalities (2.29) should be satis�ed for all 	i. For continuity of the
potentials at the interfaces, it is su�cient to require that the sets 	i contain relaxed
rank-one connected matrices.

Generally, ��i might depend on volume fractions M . We request that constraints
(4.19) are independent of M and assume the form

�i(S;D; V ) = min
M

��i(S;D; V;M) � 0 8x 2 
i: (4.22)

This assumption does not decreases 	i-sets because the inequality (4.22) is valid
for all volume fractions.

Particularly, (4.22) is satis�ed for less-than-N materials composite, namely for
any two-material composites from materials ki and kp, i; p = 1; : : : ; N , ki < kp.
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The two-material problem is an asymptotic of the general one, that corresponds to
vanishing of all volume fractions but two, mj ! 0; j 6= i; p. Referring to (3.26)-
(3.28), (3.30), we require that 	p contains the point [Sp; Di = 0; V = 0], and 	i

contains the point [Si; Di = Si � Sp; V = 0], or

�p(Sp; 0; 0) � 0; �i(Si;�(Si � Sp); 0) � 0; 1 � i < p � N: (4.23)

The minimal of all sets that satisfy conditions (4.19)-(4.23) are follows.

1. The nonsymmetric V -component of e is zero everywhere (see Remark 3.3),

V (x) = 0 in 
: (4.24)

2. Field in 
N is constant and isotropic, eN = 1p
2
�NI. 	N consists on one point:

SN = �N ; D = 0: (4.25)

3. The smallest 	i-set, rank-one connected with 	N (4.25) contains a �eld e such
that det(e� �NI) = 0 or

(S � �N )
2 �D2 = 0; S = S(x); D = D(x); x 2 
i

The smallest function �i(S) that allows this connection is as follows

D2 � �i(S) = (S � �N )
2; 8S;D 2 	i; i = 1: : : : ; N � 1: (4.26)

Notice that (4.26) is stronger than (4.18) and coincides with it when �N = 0 or kN =
1. Condition (4.26) is derived from the optimality requirements of minimization
of �i coupled with the rank-one connectedness requirements. It is valid for optimal
structures, while (4.18) { for all structures.

Uniform connectedness We call sets 	1; : : :	N uniformly connected if any
pair of them contains rank-one connected matrices, see Figure 2,

9e(x); x 2 
i; 9e(y); y 2 
j : det(e(x)� e(y)) = 0; 8i; j = 1; : : : ; N: (4.27)

In terms of microstructures, the constrains do not prevent any two subregions 
i

and 
j from being neighbors in the structure. Sets 	i de�ned by (4.24), (4.25),
(4.26) are uniformly connected. Moreover, it is easy to see that they form a minimal

uniformly connected set of �elds. Notice that the ranges 	1 and 	N are independent
of properties ki of intermediate materials. Notice also that the ranges of intermediate
materials belong to the convex envelope of 	1 and 	N ,

	i 2 C (	1;	N ) ; i = 2; : : : ; N � 1: (4.28)

This feature is expected because each intermediate material can be equivalently
replaced by a mixture of the extreme materials k1 and kN , ki 2 G�closure(k1; kN ).
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2e

1e

N(S   ,0) D= S −S  N

D= S +S  N

(S   ,0)1

Q1

S

(S   ,0)

(S     ,0)N−1

D

QN−1

Figure 2: Uniformly connected sets Qi of ranges of �elds in materials ki

Remark 4.5 The corresponding constraints for anisotropic K� could be di�erent:
(4.22) may be re�ned if its dependence of D0 6= 0 is accounted for.

Remark 4.6 The conditions of contacts between materials in an optimal structure
are investigated in [9] (Chapter 9). This technique is a development of the structural
variation technique suggested by Lurie in [22]. They are obtained by comparing the
jump conditions (2.18), (2.19) with an increment of functional J caused by structural

variation in a neighborhood of an optimal boundary. Conditions of an optimal contact
coincide with the above conditions (4.25) and (4.26).

5 New Lower Bound

5.1 First bound by localized polyconvexity

Here we work out the bounds of Section 4.2 using the constraints (4.26). Assume
that k1 < t � k2 and substitute �1 = (S1 � SN )

2 into inequalities (4.7), (4.8). We
have

G1 = (k1 + t)S2
1 + (k1 � t)(S1 � SN )

2

= 2 k1S
2
1 + (k1 � t) (�2S1 + SN )SN ;

Gi = (ki + t)S2
i ; i = 2; : : : ; N:
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The value of � (see (4.13)) in the interval k1 < t � k2 is denoted as �1 where
index 1 points to left end of the interval (k1; k2] of variation of t. It is equal to

�1 = �jt2(k1;k2] = 2m1k1S
2
1 +

N�1X
i=2

mi(ki + t)S2
i

� 2m1(k1 � t)S1SN + (mN (kN + t) +m1(k1 � t))S2
N (5.1)

or in the vector form
�1 = ST (R1 + Y1P

T )S:

Here S is vector of components of the �elds in materials, ST = (S1; : : : ; SN ), R1 is
a diagonal N �N matrix

R1 = diag(m1(2k1);m2(k2 + t); : : : ;mN (kN + t) +m1(k1 � t)); (5.2)

and Y1 and P are N -dimensional vectors with the entries

(Y1)j =

(
�2m1(k1 � t) if j = 1
0 if j = 2; : : : ; N

; (5.3)

(P )j =

(
0 if j = 1; : : : ; N � 1
1 if j = N

: (5.4)

A rank-one nonsymmetric matrix Y1P
T has only one nonzero entry (Y1P

T )1N =
�2m1(k1 � t) that corresponds to term �2m1(k1 � t)S1SN in right-hand side of
(5.1).

Quadratic form �1 is assumed to be nonnegative. This assumption corresponds
to symmetric part of matrix R1+Y1P

T being nonnegative de�ned. Solving the last
condition for mN we arrive at a condition

mN � m1
2t(t� k1))

(k1 + t)(kN + t)
8t 2 (k1; k2]: (5.5)

The inequality is the strongest, if t = k2. Here, we assume this inequality to be
true (for three-material composites, the opposite case of small mN corresponds
to the optimality of the Hashin-Shtrikman bound, as it can be checked from the
corresponding formulas in Section 7).

We normalize the mean �eld, S0 = m1S1 + : : : +mNSN = 1 or, in the vector
form,

MTS = 1; MT = (m1; : : :mN ): (5.6)

and minimize �1 over vector S = (S1; : : : SN ). Performing minimization, we �nd
vector Sopt of optimal �elds

Sopt(t) = H1(R1 + Y1P
T )�1M and min

S
�1 =

1

H1
(5.7)
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where

H1 =
1

MT (R1 + Y1P T )�1M
: (5.8)

Finally, we substitute (5.7) into bound (4.15), (4.16) and obtain

k
(1)
L = max

t2(k1;k2]
(�t+H1:) (5.9)

Accounting for (5.2), (5.3), and (5.4), we compute 1
H1

,

1

H1
=

N�1X
i=2

mi

ki + t

+
(k1 � t)m2

1 + (kN + 2k1 � t)m1mN + 2k1m
2
N

(k21 � t2)m1 + 2k1(kN + t)mN

: (5.10)

Observe that H1 degenerates into H0 (1.2) when t = k1. Therefore this bound
is no less restrictive than Hashin-Shtrikman bound (1.2).

Supporting sets The supporting sets of the pairs (S;D) for the optimal �elds
(5.7) are

	1 = fS1;�(S1 � SN )g
	2 =

(
fS2; 0g if t 2 (k1; k2)
fS2; Dg; D � S1 � SN if t = k2

	i = fSi; 0g; i = 3; : : : ; N

(5.11)

where Si are as in (5.7).
Formulas (5.11) imply that �eld e in 
1 is always in the rank-one contact with

eN = SNI in an optimal structure. In 
1, the D(x)-component is not de�ned
pointwise. It is only required that D(x) alternates values �(S1� SN ) and its mean
value is zero Z


1

D(e1)dx = D0 = 0: (5.12)

When topt = k2, the bound keeps its form, and S-components of the optimal �elds
are still computed by (5.7) but the D-component 
2 becomes unde�ned. Its mean
value satis�es the constraintZ


1

D(e)dx+

Z

2

D(e)dx = D0 = 0: (5.13)

Remark 5.1 Nonzero values of D(x) in 
2 provide the continuity of potential u at the
interfaces when the uniformly bounded �eld ru in 
1 can no longer connect domains
of other materials with isotropic �elds, because volume fraction m1 is too small. In that
case, the D component of the �eld in 
2 becomes non-zero.
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Figure 3: Eigenvalues of supporting �elds ei (5.11) that correspond to the bounds. Top
left: Hashin-Shtrikman bound (t = k1). Top right: �rst bound, k1 < t0 < k2. Bottom
left: second bound, t = k2. Bottom right: k2 < t0 < k3
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5.2 Next bounds

In general case (N � 4), calculations are similar. Assume that

t 2 (kr; kr+1] (5.14)

where r = 2; : : : ; N � 2. Terms (ki � t)D2
i , i � 1; :::; r become concave and corre-

sponding constraints (Di)
2 � (Si �Di)

2, i = 1; :::r become active.
We compute as in (4.12)

Gri =

(
(ki + t)S2

i + (ki � t) (Si � Si)
2 if i = 1; : : : ; r

(ki + t)S2
i if i = r + 1; : : : ; N

(5.15)

where �rst index r refers to interval (kr; kr+1] of t and the second index i { to the
material ki. Then, we compute � as in (4.13)

�r =
NX
i=1

mi(ki + t)S2
i �

rX
i=1

mi(t� ki) (Si � SN )
2

or in the vector form

�r(t) = STr (Rr + YrP
T )Sr

where Rr - diagonal matrix with components (Rr)ii

(Rr)ii =

8><
>:
2miki if i = 1; : : : ; r
mi(ki + t) if i = r + 1; : : : ; N � 1
�r if i = N

;

�r = mN (kN + t) +
rX

i=1

mi(ki � t); (5.16)

P is de�ned in (5.4), and Yr is a vector with coordinates

(Yr)i =

(
2mi(ki � t) if i = 1; : : : ; r
0 if i = r + 1; : : : ; N

: (5.17)

To compute the bounds, we again �x t 2 (kr; kr+1] and perform minimization over
the components Si that are constrained as in (5.6) assuming positive de�niteness of
(Rr + YrP

T ),
(Rr + YrP

T ) > 0: (5.18)
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Remark 5.2 For three-material mixtures, either (5.18) is satis�ed, or Hashin-Shtrikman
bound holds. However, for the more-than-three-material composites, this condition
might become active, when simultaneously m1 and mN are su�ciently small. We do
not work out the details of this case here.

Vector Sopt of optimal �elds in the materials is

Sopt(t) = Hr(Rr + YrP
T )�1M

where

Hr(t) =
1

MT (Rr + YrP T )�1M
: (5.19)

Thus, the problem of bounds is reduced to a �nite-dimensional problem of con-
strained optimization: It remains to compute optimal t for each interval (5.14) and
compare results:

Theorem 5.1 E�ective conductivity k� of any N -material composite that satis�es
(5.18) is bounded from below by kL,

kL = max
r=1;:::;N�1

"
max

t2(kr�1;kr]
(�t+Hr(t))

#
(5.20)

where k0 = 0.

When m1 ! 0, the bound (5.20) tends to the bound for the remaining N � 1
materials, unlike to Hashin-Shtrikman bounds (1.2).

5.3 Simpli�cation of the Bound Form

Term 1
Hr

=MT (Rp + Yp)
�1M can be simpli�ed using Sherman-Morrison formula

(Rr + YrP
T )�1 = R�1r +

1

1 + Y T
r R

�1
r P

R�1r YrP
TA�1: (5.21)

We compute
1

Hr
=MTR�1r M +

(MTR�1r Yr)(P
TR�1r M)

1 + YrR
�1
r P

: (5.22)

Using de�nitions of Rr, M , Yr, we compute

MTR�1r M =
rX

i=1

mi

2ki
+

N�1X
i=r+1

mi

ki + t
+
m2

N

�r
;

MTR�1r Yr = 2
rX

i=1

mi
ki � t

ki
; Y T

r R
�1
r P = 0; P TR�1r M =

mN

�r
:
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Substituting these terms into (5.22), we obtain an explicit formula

1

Hr
=

rX
i=1

mi

2ki
+
m2

N

�r
+

N�1X
i=r+1

mi

ki + t
+ 2

mN

�r

rX
i=1

mi

ki
(ki � t):

Collecting the coe�cients by mi, we compute

1

Hr(t)
=

rX
i=1

mi

2ki

�
1� 4mN (ki � t)

�r

�
+

N�1X
i=r+1

mi

ki + t
+
m2

N

�r
(5.23)

where �r is de�ned in (5.16). Expression (5.23) should be substituted into expression
(5.20) for the bound.

Asymptotic When the optimal value of t0 of translator t is t0 = k1, the bound
becomes Hashin-Shtrikman bound. Indeed, we compute (5.23) in this case:

r = 0; � = mN (kN + k1); H(k1) = H0(k1) =

 
NX
i=1

mi

ki + k1

!�1
:

Substituting this expression into kL, we obtain the Hashin-Shtrikman bound (1.2).
When kN =1, we compute �r =1, and Hr becomes as in Nesi bound

Hr(t) =

 
r�1X
i=1

mi

2ki
+

N�1X
i=r

mi

t+ ki

!�1
: (5.24)

6 Generalizations

6.1 Upper (Dual) bound

The dual bound kU � k� is found by the same procedure. It is enough to recall that
any divergencefree �eld j = (j1; j2) is a turned 90� gradient, j = Rrudual where R
is the matrix of 90� rotation, and udual is a dual scalar potential. The energy of the
type F = 1

k
jT j wherer�j = 0 can be represented as F = 1

k
(rudual)T (RTR)rudual.

Since RTR = I, the form of energy becomes similar to the one used in derivation
of the lower bound. Therefore, the lower bound k� � kL(k1; : : : kN ;m1; : : : ;mN ; t)
where kL is de�ned in (5.20), implies the dual bound

1

k�
� kL

�
1

kN
; : : : ;

1

k1
;mN ; : : : ;m1;

1

t

�
(6.1)
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obtained by the substitution

ki $ 1

kN�i+1
mi $ mN�i+1; t$ 1

t
(6.2)

that preserves the ordering of conductivities 1
kN

< : : : ; 1
k1

and their fractions. The
dual bound can be rewritten as the upper bound for k�,

k� � kU ; where kU =
1

kL
�

1
kN
; : : : ; 1

k1
;mN ; : : : ;m1;

1
t

� : (6.3)

6.2 Bounds for anisotropic composites

The bound for anisotropic e�ective conductivity K� is derived by a similar proce-
dure, using (2.24), (2.25). This time, it is not assumed that the external �eld e0 and
the corresponding optimal e�ective tensor K� are isotropic, D0 6= 0. The anisotropy
of the average �eld e0 changes the left-hand side of (3.15) but it does not change
the right-hand side of this estimate and supporting sets 	i, if the level of anisotropy
D0=S0 is small enough, see Remark 3.2.

Indeed, assume for example that t 2 (k1; k2). The D component of the �eld in

1 still alternates the same supporting points �(S1 � SN ) but this time it has a
nonzero mean value D̂1 2 [�(S1 � SN ); (S1 � SN )]. The fractions (measures) of the
supports are chosen to provide the equality D0 = m1D̂, see (5.12), (5.13). If D0 is
close to zero, m1jD0j � S1 � SN , the supports 	i are the same as in isotropic case.
In this range, the bound is derived similarly to the isotropic case. Here, we do not
work out the details of the constraints on the range of D0.

Assume that D0 is \small" in the following sense

m1jD0j � S1 � SN : (6.4)

Then, the bounds allow for an extension to anisotropic composites. Since supporting
sets 	i are the same as in isotropic case, the expressions for Hr is also the same.
Repeating the derivation of the bound, we transform the left-hand side of (3.16)
assuming that D0 6= 0 and K� is an anisotropic tensor with eigenvalues k�1 and k�2.
The translated e�ective energy (3.14) becomes

J0(K�; e0) + t det(e0) =
1

2
k�1(S0 +D0)

2 +
1

2
k�2(S0 �D0)

2 + t(S2
0 �D2

0)

and the bound (3.15) becomes

1

2
k�1(S0 +D0)

2 +
1

2
k�2(S0 �D0)

2 + t(S2
0 �D2

0)�Hr(t)S
2
0 � 0; (6.5)
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whereHr(t) is de�ned in (5.19). This inequality is satis�ed for all S0; D0 if the above
quadratic form is nonnegative, see (2.24), (2.25). The nonnegativity is equivalent
to the requirement that matrix�

k�1 + k�2 + 2t� 2Hr(t) k�1 � k�2
k�1 � k�2 k�1 + k�2 � 2t

�
� 0: (6.6)

it nonnegative de�ned. The nonnegativity of the determinant of this matrix leads
to inequalities

2
k�1k

�
2 � t2

k�1 + k�2 � 2t
� Hr(t); 8t 2 (kr�1; kr]; 8r = 1; : : : ; N � 1: (6.7)

Equivalently, it can be rewritten in the form

1

k�1 � t
+

1

k�2 � t
� 2

Hr(t)� 2t
; 8t 2 (kr�1; kr]; 8r = 1; : : : ; N � 1: (6.8)

that is familiar for the bounds of two-component composites, [25, 9, 28]. The bound
degenerate into (5.20), when tensor K� is isotropic (k�1 = k�2 = k�).

The bound is valid for all e�ective tensors K� but may not be exact. Indeed,
if assumption (6.4) is not valid, additional constraints must be imposed on the set
of admissible �elds. The new constraints make the inequalities more restricted and
can only increase the lower bound (6.7).

Bound (6.7) can be complemented by the dual bound obtained as in Section
6.1. Together, they de�ne a bounded domain in the plane of eigenvalues of K� - the
outer bound of the G-closure of multicomponent mixtures.

7 Bounds for three-material composites

7.1 Explicit bounds

For three-material mixtures, it is possible to explicitly compute optimal translation
parameter t and the bound. When N = 3, bound (5.20) takes form

k� � kL = max
t2[k1;k2]

(�t+H1(t)) (7.1)

where
1

H1(t)
=

m1

2k1
+

m2

k2 + t
+

(m1(k1 � t) + 2k1m3)
2

2k1(2k1m3(k3 + t) +m1(k21 � t2))
: (7.2)

Optimal value t0 of t in (7.1) are computed by solving the equation

d

dt
(�t+H1(t))

����
t=tst

= 0 (7.3)
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for t. The bulky calculation performed by Maple gives the following:

t0(m1) =

8><
>:
k1 if m11 � m1 � 1

�k2 +
p
m2(1�pm2)

m1
Z1 if m12 � m1 � m11

k2 if 0 � m1 � m12

: (7.4)

Here,

m11 = 2
p
m2(1�pm2)

k1(k3 � k2)

(k3 � k1)(k1 + k2)
(7.5)

m12 =
1�pm2

4k2(k3 � k1)
Z0 (7.6)

Z0 =
�
2k2(k3 � k1) +

p
m2(k1 + k2)(2k3 � k1 � k2)�

p
Z2

�
(7.7)

Z1 =
2m3k1(k3 � k2)�m1(k

2
2 � k21)

(m1k1 +m2k2 +m3k3)� k1 �pm2(k2 � k1)
(7.8)

Z2 = 4k22(k3 � k1)
2 + 4

p
m2Z3 +m2Z4 (7.9)

Z3 = (k2(k1 � k2)(k1 � k3)(k1 � k2 + 2k3) (7.10)

Z4 = (k1 � k2)
2(k21 + 6k1k2 � 4k1k3 � 4k2k3 + 4k23 + k22) (7.11)

When t0 = k1, bound (7.2) degenerates into Hashin-Shtrikman bound. This
happens when m1 � m11, see (7.4). Notice that if m2 = 0 (a composite is made of
two components) then m11 = 0, which shows that the Hashin-Shtrikman bound is
exact everywhere, as expected.

The critical parameters m11 and m12 are found as solutions of the equations

tst(k1; k2; k3;m1;m2) = k1; (7.12)

tst(k1; k2; k3;m1;m2) = k2; (7.13)

respectively; tst is the solution of (7.3). Solving (7.12) for m1, we obtain boundary
m1 = m11(m2; k1; k2; k3) of a region where the new bound replaces the Hashin-
Shtrikman bound. Similarly, a solution to (7.13) de�nes the second boundary m1 =
m12(m2; k1; k2; k3) where the new bound changes its form. We check that m12

m11
� 1

for all values of parameters.
To �nd the explicit expressions for e�ective properties bounds, we substitute the

optimal values t0 into bound (7.1), (7.2). The results are as follows.

Theorem 7.1 The e�ective conductivity k� of a two-dimensional isotropic composite
of three isotropic materials with conductivities k1 < k2 < k3 taken in the fractions m1,
m2 and m2, m1+m2+m3 = 1, is bounded from below by the bound kL = B(m1;m2):

k� � B(m1;m2) (7.14)
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where

B(m1;m2) =

8><
>:
B1 if m11 � m1 � 1
B2 if m11 � m1 � m12

B3 if 0 � m1 � m12

: (7.15)

Here

B1 = �k1 +
�
m1

2k1
+

m2

k1 + k2
+

m3

k1 + k3

��1
(7.16)

B2 = k2 + (1�pm2)
2Z5

Z6
(7.17)

B3 = �k2 +
�
m2

2k2
+ Z7

��1
(7.18)

and

Z5 = m1k
2
1 �m1k

2
2 + 2m3k1(k3 � k2)

Z6 =
h
(1�pm2)

2 + (1�m1 �pm2)
2
i
k1 +m1(1�pm2)

2k2 +m1m3k3

Z7 =
(k1 � k2)m

2
1 + (2k1 � k2 + k3)m1m3 + 2k1m

2
3

(k21 � k22)m1 + 2k1(k2 + k3)m3
:

B(m1;m2) is a continuously di�erentiable function of m1 and m2.

The regions of the optimality of Bi are shown in Figure 4.

7.2 Asymptotics

Case m1 ! 1. If m1 = 0, then t0 = k2 the B(t0) becomes

Bjm1=0(k2) =
m2

2k2
+

m3

k2 + k3

and the bound becomes a Hashin-Shtrikman bound for a two-component mixture
of k2 and k3, as expected.

Case k3 =1. If k3 =1, the formulas are simpler, but the problem still preserves
its form. This case coincides with the bounds by Nesi [33] computed for k3 =1.

Theorem 7.2 The e�ective conductivity k� of a two-dimensional isotropic composite
of two isotropic materials with conductivities k1, k2 and an ideal conductor k3 = 1
taken in the fractions m1 m2 and m3, respectively, is bounded from below by the bound
kL = B1(m1;m2):

k� � B1(m1;m2) (7.19)
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(7.24)). Conductivities are k1 = 1; k3 = 8. Upper left �elds: k1 = 1; k2 = 2; k3 = 8, upper
right �eld - k1 = 1; k2 = 4; k3 = 8, lower left �eld - k1 = 1; k2 = 6; k3 = 8, lower right �eld
- k1 = 1; k2 = 3; k3 = 1. Top regions - bound B1, intermediate regions - bound B2, bottom
regions - bound B3. Condition m1 +m2 � 1 is assumed (shown in the lower right �eld).

39



11

m1

10

0.1 0.14

8

7

4
0.080.04

9

5

0.060.02

6

0.12

5.4

m1

0.110.10.090.08

y

6.6

6.4

6.2

6

5.8

5.6

Figure 5: Bounds for parameters k1 = 1; k2 = 3; k3 =1;m2 = :4. Left: Lower bound B(m1; :4)
(see (7.20)). The three shown curves correspond to B1, B2, B3. Right: Magni�ed region where
all three bounds are active. Notice that the bound is smooth everywhere.

where

B1(m1;m2) =

8><
>:
B1

1 if m1
11 � m1 � 1

B2
1 if m1

12 � m1 � m1
11

B3
1 if 0 � m1 � m1

12

: (7.20)

Here,

B1
1 = �k1 +

�
m1

2k1
+

m2

k1 + k2

��1
(7.21)

B2
1 = k2 + 2

k1
m1

(1�pm2)
2 (7.22)

B3
1 = �k2 +

�
m1

2k1
+
m2

2k2

��1
(7.23)

and

m1
11 =

2k1
k2 + k1

(
p
m2 �m2); m1

12 =
k1
k2
(
p
m2 �m2): (7.24)

Bound B2
1 corresponds to an optimal value t10 of the translator t,

t10 = 2k1

p
m2 �m2

m1
� k2:
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8 Optimal three-material structures

8.1 Structures for Hashin-Shtrikman bound

Hashin-Shtrikman bound for multimaterial composites is realizable if volume frac-
tion m1 is above a threshold, m1 � m11: There exist structures with conductivity
kL. In these structures, the �elds are constant and isotropic in all materials but k1.
The conditions (2.18) allow for rank-one contact between the �elds in k1-material
and �elds in other materials, but rank-one contact between these other materials is
not permitted.

Coated circles The coated circles assembly suggested by Milton [29] is con-
structed in two steps. Firstly, a structure with circular inclusions one of from mate-
rials k2; ::; kN surrounded by an annuls from k1 is built. These are Hashin-Shtrikman
coated circles. The fractions of material k1 in these coated circles is chosen so that
all two-material coated circles have the same isotropic e�ective properties k�, which
is possible only if k1 < k� � k2 and implies a constraint m1 2 [m10; 1] on minimal
needed amount of m1: It must be larger than a threshold m10. Secondly, the ob-
tained two-materials composites of same e�ective conductivity are mixed together
in a larger scale; obviously, the e�ective conductivity does not change.

The �elds inside the inclusions from k2; : : : ; kN are constant and isotropic Si =
�i; Di = 0; Vi = 0; i = 2; : : : ; N in agreement with the translation bound, see
(3.26)-(3.28). The �elds in annuls �lled with k1 vary with its radius r. One can
check, however, that S = constant(r); V = 0, and that D(r) decreases when r
increases, see for example [28]. The maximum value of D(r0) is achieved in the
inner radius r0 of an annulus that satis�es the contact condition between materials
k1 and kj : at this line, constraint (4.26) is satis�ed as equality D(r0) = S1 � Sj .
There is no outer boundary for annuli in this assembly: The coated circles �ll in
the plane with in�nitely many scales.

Similar structures Another optimal structure of multicoated circles was found
by Lurie and Cherkaev in [26]. The multicoated structure consists of several in-
scribed annuli. The cental circle is occupied with kN , next annulus with k1, next
annulus with kN�1, next again with k1, etc. Volume fractions of k1 in annuli are
chosen so that �elds in annuli between them are constant. The structure also realizes
Hashin-Shtrikman bound and is subject to the same constraint m1 2 [m10; 1].

Two-material Vigdergauz structures [38, 17] are similar to coated circles. They
are periodic assembles of inclusions from ki of optimal shape in the envelope of
k1. These two-material structures also can be expended to the multimaterial case,
using two well-separated scales. A smaller scale corresponds to solutions of periodic
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Figure 6: Right: Cartoon of an optimal laminate three-material structure, , see [4]. The
case m1 � m11 (Hashin-Shtrikman bound). The two-digit labels on layers show the
order of laminating (�rst digit) and the material (second digit). Left: Eigenvalues of
corresponding supporting �elds in an optimal three-material composite. Circles denote
�elds in layers, lines denote a connected path. The small stripped circle denotes the
average isotropic �eld e0. Digits on lines show the order of lamination.

Vigdergauz problems for all pairs k1 and ki, i = 2; : : : ; N . A larger scale is used to
mix these composites together as in Milton scheme. The same constraint applies.

Multiscale laminates: Geometry A di�erent type of optimal structures is
multiscale laminate by Albin, Cherkaev, and Nesi [4] and suggested earlier rectan-
gular blocks by Gibiansky and Sigmund [15]. These structures and the �elds in the
layers are depicted in Figure 6. The structures are optimal in a region of para-
meters m1 2 [m11; 1] that is greater than the region of optimality of coated circles,
m11 < m10. Moreover, we show here that multiscale laminate structures are optimal
everywhere where Hashin-Shtrikman bound is optimal.

Remark 8.1 The laminate of a rank [9] is a multiscale sequence of microstructures
(laminates within laminates) that corresponds to inde�nite increase of the ratio of the
thickness of laminates of di�erent scales. The e�ective conductivity of that sequence
tends to its limit k� in the sense of G-convergence.

The central element of the optimal structures is the T 2-structures introduced in
[4], see Figure 6, center. They are as follows. The laminate of materials k1, and k3
is formed with volume fractions �11 and �13 = 1��11. The tangent is oriented along
x1 -axis. This laminate is labeled \1"; the label corresponds to the �rst index of
the volume fractions �1p, second index p refers to material kp. At the second step,
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this composite is laminated in an orthogonal direction with a layer of k2; the layers
are oriented along x2-axis. This layer is labeled \2" and the volume fractions of the
added layer of k2 is denoted �22. We call the resulting second-rank laminate [9] the
T -structure and denote it as L13;2.

Next, the T -structure is laminated in x1 direction with another laminate of ma-
terials k1 and k3. This laminate is labeled \3" and the volume fractions of materials
in it are denoted as �31 and �33 = 1��11 respectively. The layers are oriented along
x2, orthogonal to the layer with T -structure. We call this structure T 2-structure

and denote it L13;2;13. The relative volume fractions of the two fragments are called
�4 - the fraction of the T -structure, and 1� �4 - the fraction of the added laminate.
Finally, the T 2-structures are sequentially laminated by the two orthogonal layers
of k1, forming the structure L13;2;13;1;1.

Multiscale laminates: Rank-one connections The �elds in optimal struc-
tures depend on fractions of materials in the layers. In all orthogonal laminates,
�elds are symmetric (V2 = V3 = 0). In the optimal structures, the fractions must be
chosen so that the �elds in 
2 and 
3 are isotropic (D2 = D3 = 0), S-component
of the �eld in is constant in each subdomain, and the ratio between S-components
is as prescribed in the bound, see (3.22).

In laminates, �eld e = ru is represented by the pair (ea; eb) of its eigenvalues,
the eigenvectors of e are directed along or across laminates. Laminate structure can
realize the translation optimality conditions (3.26)-(3.28) as follows. A laminate
labeled "1" connects �eld (�1; �3) in the �rst material with isotropic �eld (�3; �3) in
third material. The �elds are rank-one connected. The average �eld in the laminate
is (e�; �3) where e� = ��3 + (1 � �)�1 and � 2 (0; 1) is the volume fraction of the
third material.

T -structure is formed when the obtained composite is laminated with layer of k2.
We request that D-component of the �eld in k2 is zero, or that it has a form (�2; �2).
These �elds in the structure are compatible if fraction � is so chosen that �eld
(e�; �3) is in rank-one contact with the �eld (�2; �2) in k2: k� = ��3+(1��)�1 = �2.
Parameters �i are related by (3.28).

T 2-structure is formed when the T -structure is laminated in an orthogonal di-
rection with another laminate of k1 and k3. The volume fractions of the materials
in the added laminate must be chosen so that �eld in k1 is equal to (�3; �1) and
�eld in k3 - to (�3; �3) and the added laminate and the T -structure are in rank-one
connection. Then, S-component of the �eld in k1 is constant everywhere in the
structure, and �eld in k3 is constant and isotropic everywhere.

Finally, the assembly is twice laminated with k1 in two orthogonal directions.
The �elds in them must have the form (ya; �1 � ya) and (yb; �1 � yb), respectively,
where ya and yb are real parameters. Then S-component of the �eld is constant.
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The volume fractions of the added layers are chosen so that the whole structure is
isotropic (D0 = 0). The �elds are shown in Figure 6.

The above-listed conditions for the �elds in laminates form a system of equations
for the unknown volume fractions of layers. If the system has a solution, the optimal
structure is found. The solvability conditions restrict the range of volume fraction
m1 as m1 � m11, see [4]. The described structure realizes Hashin-Shtrikman bound
because su�cient conditions (3.27), (3.28), and (4.26) are satis�ed everywhere.

Remark 8.2 Optimal structures of rectangular blocks, suggested earlier by Gibiansky
and Sigmund in [15] are similar to the described here laminates. The square cell of
periodicity 
 is divided into four rectangular domains, �lled with either pure materials
or laminates. The e�ective properties of laminates in the rectangles are chosen so that
the separation of variables in (2.17) is possible, and the solution u(x1; ub) is piece-wise
a�ne. Gibiansky and Sigmund [15] proved optimality of this construction: It realizes
Hashin-Shtrikman bound in the interval m1 2 [m11; 1].

8.2 New optimal three-material structures

We demonstrate here that the obtained bounds are exact by showing optimal lam-
inate structures with conductivities equal to the bound kL.

Theorem 8.1 The bound (7.19)-(7.24) is exact in each point: There exist laminates
of a �nite rank that realize the bounds.

Optimal structures that realize the new bounds are shown in Figure 7. Fields in
the neighboring subdomains are rank-one connected, which provides for continuity
of the potential. In optimal structures, �elds eij in layers satisfy su�cient conditions
(5.11):

1. Gradients rua and rub are orthogonal everywhere in 
, V = 0.

2. Field is isotropic and constant everywhere in 
3, D = 0 and S = �3.

3. S-component of �eld in 
1 is constant, S = �1 and this �eld is always in
rank-one contact with the third material, D = �(�1 � �3).

4. If m12 < m1 < m11, the �eld in 
2 is isotropic: D(x) = 0; S(x) = �2: If
m1 � m12, then S(x) = �2 is constant, but D(x) varies in di�erent layers of
k2.

The �elds are shown in Figure 3.

44



Figure 7: Left, Center, Right: Cartoons of optimal structures for the bounds B1, B2, B3,

respectively. Observe the topological change when the amount of k1 decreases: The 
1 domain

in the left structure is connected, no domains are connected in the structure in the center, and

domain 
2 in the right structure is connected. When m1 ! 0, the right structure degenerates

into a two-material second rank laminate with k2 (envelope) and k3 (inclusions), laminated with

laminates of k2 and k3.

Optimal microstructures for B3 The sequential laminates that realize the
bound (7.18) kL = B3 are L123;2;123-structures. They are constructed by the follow-
ing iterative scheme:

(1) The laminate of materials k1, k2 and k3 is formed with volume fractions
�11; �12 and �13 = 1� �11 � �12. The tangent is oriented along x1 -axis. The layers
are labeled 11; 12; 13, respectively

(2) The obtained composite is laminated in the orthogonal direction with a layer
of k2 oriented along x2-axis, forming a T -structure. This layer is labeled 22, and
the structure - L123;2

(3) The obtained T -structure is laminated in x1 direction with another laminate
of materials k1, k2 and k3. The layers in this last laminate are labeled 31; 32; 33,
respectively. The volume fractions of materials in that laminate are denoted as
�31; �32 and �33 = 1 � �11 � �12 respectively, and the layers are oriented along x2.
The relative volume fractions of the two fragments are �4 { the fraction of the T -
structure, and (1� �4) { the fraction of the lastly added laminate. We denote this
structure as L123;2;123. The total volume fractions of k1 and k2 are

m1 = (1� �4)�31 + �4(1� �2)�11; (8.1)

m2 = (1� �4)�32 + �4(1� �2)�12 + �4�2: (8.2)

Volume fractions of layers in an optimal structure are chosen to satisfy the optimality
conditions listed above, as it is shown in Appendix.
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A di�erent optimal structure for B3 The shown optimal structures are not
unique. There are several ways to joint optimal �elds by a rank-one path. Another
type of optimal structures that realizes B3-bound for very small m1 is found in [9]
for the case k3 =1. This structure is L123;2-laminate of the second rank in which
the layers of all three materials are laminated in an orthogonal direction with a layer
of k2. This laminate can be isotropic if m1 is su�ciently small

m1 2 [0;m1
120]; m1

120 =
m2(1�m2)

1 +m2

�
k1
k2

�
:

Notice that m1
120 < m1

12, see (7.24). The e�ective conductivity of optimal L123;2 and
L123;2;123 laminates coincide, but the last one is optimal in a larger range of m1.

Optimal structures for B2 Optimal structures that realize the intermediate
bound B2 are special T 2-structures (Figure 7, center �eld) of the type L13;2;13. In
them, fractions �12 and �32 are zero, �12 = 0 �32 = 0 so that k2-material is placed
in the second layer only. In the range m12 < m1 < m11, structural parameters
(volume fractions of laminates) can be chosen to satisfy the optimality conditions
in Theorem 8.1, as it is shown in Appendix.

Asymptotic When m1 ! 0, the structure degenerates into an optimal two-
material composite L23;2;23. It realizes Hashin-Shtrikman bound for (k2; k3)-composite.
Indeed, the T -structure (regions "1" and "2") become matrix laminate L23;2 that
realizes the translation bound (3.29) see [24, 9]. Lamination of this structure with
a laminate L23 keeps it translation-optimal, see [4]. An appropriate choice of para-
meters brings the structure to an isotropy. The limiting structure is of the type of
"haired sphere" structures, described in [2].

When m2 ! 0 or m3 ! 0, the optimal structure degenerates into L13;1;1 and
L2;1;1, respectively. These are equivalent to second-rank matrix laminates that are
optimal for two-material (k1; k3)- and (k1; k2)-composites, respectively.

8.3 Connectedness of subdomains in optimal compos-
ites

We comment on topology the optimal periodic structures that realize the bounds.
The periodic elements of them are shown in Figure 7. There are three types of
structures that di�er by the connected domain and two topological transitions be-
tween these types. When m1 decrease from one to zero, the enveloping material
changes from k1 to k2 in the following way.

When m1 > m11 (bound B1), structure L13;2;13;1;1 is optimal. In the structure,
a part of k1 in the outer layers forms a connected domain. The T 2-structures form
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inclusions in that domain. The inclusions are composed as follows: the nucleus is
made from an intermediate material k2, and the periphery is a laminate from k1
and k3; the layers are directed toward the core, providing a path for the current
between an outer boundary and the nucleus.

Below the threshold m11, the outer layers of k1 disappears and the T 2-inclusions
are joined together. In the region m12 < m1 < m11 (bound B2), structure L13;2;13

is optimal. In that structure, none of materials occupies a connected domain, but
(k1; k3)-layers connect 
-periodic nuclei of k2. The optimal composite resembles
Schulgasser's optimal polycrystals [35] with the nuclei.

Below the second thresholdm1 < m12 (boundB3), structure L123;2;123 is optimal.
In it, a layer of k2 is added to the (k1; k3)-laminate that surrounds the nuclei.
Thus, domain 
2 percolates and becomes connected. Domains 
1 and 
3 become
inclusions. The �eld in 
3 remains constant and isotropic.
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9 Appendix. Calculation of parameters of op-

timal laminates

Expression for e�ective properties Here we show the optimal structural
parameters for the structures that realize the bound B (7.14) for all values of pa-
rameters. Volume fractions of layers in an optimal structure are chosen so that the
optimality conditions of Section 8.2 are satis�ed. The calculation were performed
by Maple. Here we show the results of the calculation of the optimal parameters for
the asymptotic case k3 =1 when the bound has the form (7.19). The general case
of �nite k3 is similar, but the formulas are much bulkier and not too instructive.
They are obtained by applying the same Maple procedure.

Assume that the structure is subjected to a pair of isotropic external �elds
e0 = I. In orthogonal structures. the �elds e = ru in layers are form a diagonal
matrix. This matrix is represented by a two-dimensional vector of eigenvalues enm =
(enm[1]; enm[2]) where indices n and m show the material in a layer and the position
of the layer in a structure, respectively. Their eigenvectors of enm are co-directed
with laminate direction, so the matrices enm are completely de�ned by the vector of
their eigenvalues. The average �eld e0 is assumed to be e0 = I. Applying rank-one
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conditions on the boundaries, we �nd �elds in L123;2;123 (k3 =1)

e11 =

� k2
�4(�11k2+�12k1)

0

�
; e31 =

�
0
k2

�31k2+�32k1

�
; (9.3)

e12 =

� k1
�4(�11k2+�12k1)

0

�
; e22 =

� 1
�4
1
�2

�
; e32 =

�
0
k1

�31k2+�32k1

�
; (9.4)

e13 = e33 =

�
0
0

�
: (9.5)

Optimal parameters for B1-structures The structures that realize Hashin-
Shtrikman bound (Figure 7, left �eld) are orthogonal laminates of the type L13;2;13;1;1.
They are mentioned above, in Section 8.1 and are described in details in[4]. They
consists of inclusions sequentially laminated by two orthogonal layers of the amount
m1 �m11 of k1. The inclusions are T 2-structures L13;2;13 in which the amount of
the k1-material is equal to m11.

Optimal parameters for B2-structures These optimal structures that real-
ize the intermediate bound B2 are T

2-structures (Figure 7, center �eld) of the type
L13;2;13. In them:

1. The fractions �12 and �32 are zero, �12 = 0 �32 = 0 so that k2 is placed in the
second layer only. It forms nuclei inclusions joined by directors: laminates from
k1 and k3. Constraint (8.1) becomesm2 = �2�4 and the e�ective conductivities
k�1 and k

�
2 in x1 and x2 directions, respectively, become linear combinations of

k1 and k2

k�1 =
1

�2�31
[(�2 � �2�4 + �4�32)k1 + �4�32k2] ; (9.6)

k�2 =
1

�4�11
[(1 + �2�12 � �2)k1 + �2�11k2] : (9.7)

2. S-component is constant in 
1, that is e11[1] = e13[2] in (9.3), which implies
�31 = �11�4, see (9.3).

3. D-component is zero in 
2, that is e22[1] = e22[2] in (9.4), which implies
�2 =

p
m2 �4 =

p
m2, see (9.4)..

4. The structure are isotropic, or k�1 = k�2 (see (9.6), (9.7)).

We choose volume fractions of laminates to satisfy the above conditions and (8.1),
(8.2). Solving the corresponding equations for fractions �mn, we compute their
optimal values denoted as vmn

v2 = v4 =
p
m2; v31 =

m1

2(1�pm2)
; v11 =

�31p
m2

: (9.8)
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Energy densities W1 and W2 in the �rst and second materials, respectively, are

W1 =
1

2
k1
�
e211 + e231

�
= k1

�
1�pm2

m1

�2

ke0k2;

W2 =
1

2
k2ke222k =

k2
2m2

ke0k2:

The average energy m1W1+m2W2 de�nes the e�ective conductivity k�. One checks
that k� = B12 . Therefore, the bound is exact.

Optimal parameters for B3-structures These are the T 2-structures (see
Figure 7, right �eld) of the type L123;2;123 that satisfy (8.1), (8.2). E�ective prop-
erties of these structures are expressed through the structural parameters as

k�1 =
k2

�31k2 + �32k1

1

�2
((�2 � �2�4 + �4�32)k1 + �4�32k2) ; (9.9)

k�2 =
k2

�12k1 + �11k2

1

�4
((1 + �2�12 � �2)k1 + �2�11k2:) : (9.10)

The optimality conditions are

1. S-component is constant in 
1, that is e11[1] = e31[2] in (9.3), implying

�31k2 + �32k1 = �4(�11k2 + �12k1): (9.11)

2. S-component is constant in 
2, that is

e12[1] + e12[2] = e22[1] + e22[2] = e32[1] + e32[2]

One of these equalities follows from (9.11), the other implies

k1
�31k2 + �32k1

=
1

�2
+

1

�4
:

3. The structure is isotropic, k�1 = k�2 in (9.10), (9.9).

Solving for structural parameters �p, we obtain a family of isotropic structures that
have the same optimal e�ective property k� = B13 . Therefore the bound B13 is
exact.

49



Nonuniqueness Optimal structures L123;2;123 are not unique. There is a free-
dom in choosing of volume fractions. Namely, fraction �23 is not de�ned by opti-
mality conditions, that is the distribution of k2 between the inner and outer layers
is not unique. We put �32 = P�4�12 where P is a parameter and obtain

v2 = v4 =
m1k2 +m2k1

k1
; (9.12)

v31 =
P

1 + P

m1k1

(k1 � ~k)
+
1� P

1 + P

~k

2k2
; (9.13)

v11 =
k1

P + 1

 
m1k1

k1k̂ � k̂2
+
P � 1

2k2

!
: (9.14)

Here, k̂ = m2k1 +m1k2. The range of P is obtained from the conditions v31 � 0
and v11 � 0. Solving for P , we obtain

P 2
�
P0;

1

P0

�
; P0 = 1� 8k2m1k1

k21 � k̂2
: (9.15)

We also check that the optimal e�ective conductivity k� is independent of P . For
de�niteness, we may request that the average �eld in the 
1 and 
2 is isotropic,
which corresponds to P = 1.

Transition points We expect that v12 and v32 vanish whenm1 = m12 because at
that point the bound become kL = B2 and corresponding optimal structure becomes
L13;2;13 as described above. To con�rm this feature, we introduce a nonnegative
parameter �1 = m12�m1 � 0, instead ofm1, and calculate optimal volume fractions
v12 and v32:

v12 = �1
k2

P + 1

 p
m2

k1
p
m2 � �1k2

� 1 +
p
m2

(�1 +pm2)k1 � �1k2

!
; (9.16)

v32 = �1
P k2

�
2 k1

p
m2 � �1 k2

�
(P + 1) k1

�
k1(1�pm2) + �1 k2

� : (9.17)

We observe that both fractions �32 and �12 vanish when �1 = 0 and the structure
becomes a B2-type structure. At the point of this topological transition, the current
densities through k1 and k2 are equal, k1je11j = k2je22j: A similar calculation for the
transition point m11 is performed in [4]. It shows that external layers disappear in
L13;2;13;1;1-structure when m1 ! m11 + 0.
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