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Abstract

The paper is concerned with simulation of the damage spread in pro-
tective structures with “waiting links.” These highly nonlinear structures
switch their elastic properties whenever the elongation of a link exceeds
a critical value; they are stable against dynamic impacts due to their
morphology. Waiting link structures are able to spread “partial damage”
through a large region, thereby dissipating the energy of the impact. We
simulate various structures with waiting links and compare their charac-
teristics with conventional designs. The Figures show the damage propa-
gation in several two-dimensional structures.

Keywords: Dynamics of damage. Failure. Structures.
AMS classification: 70K75, 37TN15, 74D10

1 Introduction. Waiting elements and spread of
damage

This paper describes protective structures that exhibit an unusually high dis-
sipation if they are subject to a concentrated (ballistic) impact. Under this
impact, the structure experiencesHvery large forces applied during a short
time. The kinetic energy of the projectile must be absorbed in the structure.
We want to find a structure that absorbs maximal kinetic energy of the projectile
without rupture or breakage. Here, we consider dilute structures. Specifically,
we define the structure as an assembly (network) of rods connected in knots.
The structure may be submerged into a viscous substance.

While theoretically a material can absorb energy until it melts, real struc-
tures are destroyed by a tiny fraction of this energy due to material instabilities
and an uneven distribution of the stresses throughout the structure. Therefore,
we increase the stability of the process of damage byLspecial morphology of the
structural elements.
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The increase of the stability is achieved due to special structural elements
used for the assembly: the so-called “waiting links”. These elements contain
parts that are initially inactive and start to resist only when the strain is large
enough; they lead to large but stable pseudo-plastic strains; structures distribute
the strain over a large area, in contrab, to unstructured solid materials where
the strain is concentrated near the zone of an impact. Similar structures are
considered in [1], [4], [6], [9], [10]. The continuum models are discussed in [2];
experimental study is performed in [8].

In this paper we introduce a model for dynamic failure of links made from
brittle-elastic materials, discuss the dynamics of networks of waiting links, a
model of the penetrating projectile and the criteria of resistance of deteriorating
structurd. We simulate the damage spread in the lattices and optimize their
parameters. The giguresr demonstrate elastic waves and waves of damage in
the lattices and viSualize the damage evolution.

2 Equations and algorithms

2.1 Brittle-elastic bar

Consider a stretched rod from a homogeneous elastic-brittle material. If slowly
loaded, this material behaves as ag linear elastic one, unless the length z reaches
a critical value zy, and fails (becomes damaged) after this. The critical value
z¢ is proportional to the length L of the rod at equilibrium

2= L(1+ ) (1)

where the critical strain e; is a material’s property. The static force Fytasc in
such a rod depends on its length z as

ks(z/L—1) ifz<z
£ “““’C(z):{ 0 ey if 2 > z; @

where k is baf elastic modulus and s is the cross-section of the rod.

Dynamic model of damage increase We are interested to model the dy-
namics of damageable rods; therefore we need to expand the model of brittle
material adding the assumption of the dynamics of the failure. We assume that
the force F' in such a rod depends on its length 2z and on the damage parameter
e

F(z,¢) =ks(1 —c)(z/L -1} (3)

where-J-is-theelastic-modulud. The damage parameter ¢ is equal to zero if the
rod is not damaged and is equal to one if the rod is destroyed; in the last case the
force obviously is zero. Development of the damage is described as the increase
of the damage parameter ¢(z,t) from zero to one. The damage parameter equals
zero in the beginning of the deformation and it remains zero until a moment
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when the elongation excee&thé critical value; it can only increase in time. This
parameter depends on the history of the deformation of the sample.
We suggest to describe the increase odea.mage parameter by the differential
equation
de(z,t) vg if z>2zrande<1
et e I = R = 4
dt 0 otherwise » c(0)=0 )

where zy is the maximal elongation that the element can sustain without being
damaged, and v, is the speed of damage. This equation states that the damage
increases in the instances when the elongation exceeds the limit zy; the increase
of damage stops if the element is already completely damaged. The speed vg4
can be chosen as large as needed.

Remark 1 The damage can also be modeled by a discontinuous function cg
that is equal to zero if the element is undamaged andk‘o one if it is Ramagal:

cu(z,t) = vdlgrloo c(z,t).

Consideration of continuously varying damage parameter ({) instead of a dis-
continuous one increases stability of the computational scheme.

Remark 2 One can argue about the behavior of the rod with an intermediate
value of the damage parameter. We do not think that these states need a special
justification: they simply express the fact that the stiffness rapidly deteriorates
to zero when the sample is over-strained. We notice that in the simulations
presented here the time of transition from undamaged to damaged state is short.

2.2 Waiting links

Here we introduce special structural elements — waiting links ~ that several times
increase the resistivity of the structure due to their morphology. These elements
and their quasistatic behavior are described in [1]. The link is an assembly of
two elastic-brittle rods, lengths L and A (A > L) joined by their ends (see
Figure 1, left). The longer bar is initially slightly curved to fit. When the link is
stretched by a slowly increasing external elongation, only the shortest rod resists
in the beginning. If the elongation exceeds a critical value, this rod breaks at
some place between two knots. The next (longer) rod then assumes the load
replacing the broken one.

Assume that a unit amount of material is used for both rods. This amount
is divided between the shorter and longer rod: the amount « is used for the
shorter (first) rod and the amount 1 — « is used for the longer (second) one.
The cross-sections s; and s of rods are:

l-«

and sz2(a) = A (5)
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Figure 1: Left above: The waiting link in the initial state. Left below: The wait-
ing link after the first rod is broken. Right: The force-versus-length dependence
for a monotone elongation

The force-versus-elongation dependence in the shorter rod is:
z
Fi(:)=ksi(a) (3 -1) 1 -a) (6)

where ¢; = ¢;(2,t) is the damage parameter for this rod; it satisfies the equation
similar to (4)

dey(z,t) vg if z2 2z and g (z,t) <1
i 10 otherwise a(z0)=0 (7
where zg, = L(1 + €5).
The longer rod starts to resist when the elongation z is large enough to
straighten this rod. After the rod is straight, the force-versus-elongation depen-
dence is similar to that for the shorter rod:

R il 565 S

Here F; is the resistance force and ¢z = ¢3(#,t) is the damage parameter for the
second rod:

dey(z,t) { vg if z>zp and e2(2,t) < 1

dt 0 otherwise e(z,0) =0 )

These equations are similar to (6), (7), where the cross-section s (a) is replaced
by s2(c) and the critical elongation zy, by zy, = A(l + €7). The difference
between the two rods is that the longer (slack) rod starts to resist only when
the elongation is large enough.
The total resistance force F(z) in the waiting link is the sum of Fi(z) and
Fz (Z)
F(z) = Fi(z) + Fa(2). (10)
The graph of this force-versus-elongation dependence for the monotone ex-

ternal elongation is shown ¢n Figure 1 (right) where the damage parameters
jump from zero to one at thé critical point zy, .



One observes that the constitutive relation F(z) is nonmonotone. Therefore
one should expect that the dynamics of an assembly of such elements is char-
acterized by abrupt motions and waves (similar systems but without damage
parameter were investigated in [5, 6]).

2.3 Dynamics

It is assumed that the inertial masses m; are concentrated in the knots joined
by the inertialess waiting links (nonlinear springs), therefore the dynamics of
the structure is described by ordinary differential equations of motion of the
knots. We assume that the links are elastic-brittle, as it is described above.
Additionally, we assume that the space between the knots is filled with a viscous
substance with the dissipation coefficient «. The role of the viscous medig is
important: We will demonstrate that even a slow external excitation leads to
intensive waves in the system, the energy of thﬂ waves are eventually adsorbed
by the viscosity. Without the viscosity, the system never reaches a steady state.
The motion of{ith knot satisfies the equation

. . Fij (|2 — z;
MyZy + Y2 = Z —]él_—mﬂ—)(zi - ;) (11)
JEN(H) o

where z; is the vector of coordinates ofLith knot, |.| is length of the vector, N (i)
is the set of knots neighboring the knot 7, m; is the mass of the ith knot. The

force Fy; in the ijth link depends on the damage parameters ¢;;; and ¢;; 2 28l

n (10). The set of neighboring knots depends onigeometric configuration.

Remark 3 In this model, the masses are permitted to travel as far as the elastic
links permit. Particularly, when these links are completely broken, the concen-
trated mass moves “between” other masses without|interaction with them.

Below in Section 4.4, we discuss a special model for the projectile that is
“large enough” and does not slip through the rows of linked masses.

Setting The speed of waves in a structure is of the order of the speed of sound
in the material which the structure is made of (approximately 5,000 m/sec for
steel). In our numerical experiments, we assume that the speed of the impact
is much smaller (recall that the speed of sound in the air is 336 m/sec). A
slow-moving projectile does not excite intensive waves in stable structures, but
it does excite mighty waves of damage in the waiting structure. The reason
is that the energy stored in the elastic links suddenly releases when the links
are broken. This phenomenon explains the superb resistance of the waiting
structure: The energy of the projectile is spent to excite the waves of damage.

2.4 Numerical algorithm

To solve the system (11) numnerically, we first rewrite it as an autonomous system
of first order differential equations:

ii = Pi, (12)
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i 1
pi = E(@ ~7pi), (13)
where .
pi= > —————ij(I.Zi __zjl) (21 — z;). (14)
JEN(3) lzi — 2]

Introducing the notation

= 1
X ={z,pi}, f= {Pi: E(@ —”/Pi)} ,
we get ) .
2= (3.

We solve the resulting system via the second order Runge-Kutta method

k(2 - -
Furr =Kt o () + E( +hf(in))) , (15)

where k denotes the time step. Note that the stability condition of the result-
ing method depends on the damage speed vy from (7),(9) and the dissipation
coefficient . In all numerical experiments that follow we establish convergence
empirically via time step refinement.

3 Damage of a homogeneous strip

We consider a homogeneous strip made as a triangular lattice with waiting
links. The left side of the strip is fixed while the right one is pulled with a given
constant speed V.

The three next figures show the comparison of damage evolution in the wait-
ing link structures (Figures 2, 3, & = 0.25) and the structure from conventional
brittle-elastic materials (Figure 4; o = 1.0). Intact waiting links (both rods are
undamaged) are shown by bold lines; partially damaged links (the shorter rod is
destroyed, the longer one is undamaged) correspond to dashed lines; destroyed
links (both links are damaged) are not shown.

Figures 2 and 3[§f illustrate an interesting phenomenon: controllability of the
wave of damage. If the speed V is high, the wave of “partial brealkage” {colored
p\l}‘l_g) propagates starting from the point of impact; when the wave reaches the
other end of the chain, it reflects and the magnitude of stress increases; at this
point, the chain breaks. Notice that the breakage occurs in the opposite to
the impact end of the chain. If the speed is smaller, the linear elastic wave
propagates instead of the wave of partial damage; the propagation starts at
the point of impact. When the wave reaches the opposite end of the strip and
reflects, it causes the wave of partial damage that propagated toward the point
of impact. Later, the strip/breakf near the point of impact (not shown).

Figures 3 and 4 compare the waiting link structures to conventional brittle-
elastic structures (with the same pulling speed V and final time). One can see



Figure 2: Evolution of damage in a fastly pulled lattice with waiting elements
(a=25%).

Figure 3: Evolution of damage in a slowly pulled lattice with waiting elements

_(P_s%).
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Figure 4: Evolution of damage in a slowly pulled lattice without waiting ele-
ments (a=1).

that the conventional strip breaks near the point of impact as well as near the
fixed side. Note that only several links in the conventional structure break while
all others stay undamaged. To the contrary, the waiting link structure spreads
“partial damage” through the whole region, thereby dissipating the energy of
the impact. As a result, the waiting link strip preserves the structural integrity
due to absorbing the kinetic energy of the pulling.

Remark 4 The direct comparison of conventional and waiting link structures
is not easy: the energy dissipated in a conventional structure is proportional to
its crossection (Figure {Jwhile the energy dissipated in the waiting link structure
is proportional to its volume (Figure ).

4 Structures under a concentrated impact

In this section, we investigate the resistance and failure of structures from wait-
ing links impacted by a massive concentrated projectile. The kinetic energy of
the projectile must be absorbed in the structure without its total failure.

4.1 Model of the projectile

Modeling the projectile, one needs to take into account the penetration of it
through the structure, and prevent it from slipping through the line of knots.
Therefore one cannot model the projectile as another “heavy knot” in the struc-
ture with an initial kinetic energy: Such/modellleads to the failure of the im-
mediate neighbor links after which the projectile slips through the net without
interaction with other knots.
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In our experiments, the projectile is modeled as an “elastic ball” of the mass
M, centered at the position z,. Motion of the mass satisfies the equation

Mydp =3 Lrillzp — 7)) “"il:p__zj?') (2o — 23) (16)

similar to (11), but the force Fy; is found from the equation

0 if z> 8
Fyi(z) = ln(%f) if A<z<B (17)
+00" if z<A

In the numerical experiments that follow/ A = 0.5L, B = 2L.

This model states that a repulsive force is applied to the knots when the
distance between them and 2 is smaller than a threshold B. This force grows
when the distance decreases and become!infinite fhen the distance is smaller
than A. This model roughly corresponds to the projectile in the form of a
nonlinearly elastic ball with a rigid nucleus. When it slips through the structure,
the masses in the knots are repulsed from its path causing deformation and
breaks of the links.

4.2 Effectiveness of a design

Comparing the history of damage of several desigf, we need to work out a
quantitative criterion of the effectiveness of the structure. This task is nontrivial,
since different designs are differently damaged after the collision.

Effectiveness criterion We suggest an integral criterion that is not sensitive
to the details of the damage; instead, we are measuring the variation of the
impulse of the projectile. It is assumed here that the projectile hits the structure
flying into it vertically down.

To evaluate the effectiveness, we compute the ratio R in the vertical com-
ponent p, = pp - (0,1) of the impulse pp of the projectile before and after the
impact:’

R= pv(Tfinal) (18)
[po(Z0)]

where Ty and T;nq are the initial and the final moments of the observation,
respectively. The variation of impulse of the projectile R shows how much of it
is transformed to the motion of structural elements. Parameter R evaluates the
structure’s performance using the projectile as the measuring device without
considering the energy dissipated in each element of the structure; it does not
va.ried when the projectile is not in faf contact with the structure.

Different values of the effectiveness parameter are presented in the Table 1.
An absolute elastic impact corresponds to the final impulse opposite to the initial
one; therefore in this case R = —1. The absence of the structure correspond,to
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| Effect Range of R
Elastic contact with a rigid plane -1
Projectile is rejected (-1, 0)
Plastic contact (the projectile stops) 0
Projectile breaks through (0, 1)

No effect 1

Table 1: Effectiveness parameter R

R =1, because the impulse of the projectile does not change. If the projectile
stops then d = 0; if it breaks through the structure; then R € (0, 1]; and if it is
rejected, then R € [—1,0). The smaller R is, the more effective the structure is.

Other criteria Other criteria compare the state of the structure before and
after the collision. These criteria are applicable only if the structure (or its

pieces) fafter the collisionj reach a steady state This is why we need the dissipa-
tion factor in the model. *Wthdut this factor, the elastic waves never stopi and

their interference cause‘f additional damage to the structure any time after the |

collision.
We register several criteria:

1. The percentage of partially damaged links.
2. The percentage of destroyed links.

The first number shows how effective the damage is spread, and the second
showsﬁ;adly the structure is damaged. ldeally, we wish to have a structure in
which all elemeni are partially damaged, but no element is completely destroyed.

Remark 5 The number of destroyed elemenl is a rough quality criterion. It
ignores a significant factor - the positions of the destroyed links.

4.3 Bridge-like designs

INext figures (Figures 5 and 6} show the dynamics of the damage of a bridge-like
truss structure made from waiting links (1). The structure is supported by its
vertical sides. The horizontal sides are free, It is impacted by a projectile that
is modeled as an “elastic ball” [(4.3), The projectile impac} the center of the
upper side of the structure moving vertically down with an initial speed vg. If
the speed is small, the projectile is rejected, otherwise it penetrates through
the structure. t'"fhé difference in the impulse of the projectile before and after
the impact shows the effectivenessof the structure. The number of destroyed
links also represent the effectiveness showing how much the damage is spread.
Dynamic constitutive relation for each element is described as a damageable

link-2:3.
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Figure 5: Evolution of damage in a lattice with waiting elements (left column

a=25%, right column: a=10%).
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Figure 6: Evolution of damage in a lattice with (right, «=50%) and without
(left «=25%)) waiting elements. ;
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Figure a % of | % of de- | Effective- | Final
dam- stroyed | ness time
aged links R Ttinal
links

Fig. 5 (right) |0.10 [ 94% | 3.8% | -0.26 500

Fig. 5 (left) 0.25 | 42% 3.8% -0.32 500

Fig. 6 (right) | 0.50 | 46% | 6.3% 0.54 250

Fig. 6 (left) 1.00 | 0% 8.6% 0.46 250

Table 2: Damage and/or destruction of a bridge.

We simulate the damage process of the bridge by varying the parameter
a (the fraction of material put into the shorter link) while keeping the other
parameters (L, A, zy,, zg,, total amount of material, etc.) the same for all runs.
The results of the simulation are summarized in Table 2. One can see from Table
2 that as « decreases from 1.00 (conventional structure) to 0.10 the percentage of
partially damaged links increases as the percentage of destroyed links decreases
making the structure more resistant. Table 2 also shows that o = 0.25 is
optimal for both minimizing the number of destroyed links and minimizing the
effectiveness parameter R (see the discussion in Section 4.2).

. Figures 5 and 6 show the damage evolution of the impacted structures that
| differ by the value of a. Intact waiting elements (both-links are undamaged) are |
shown by bold lines; partially damaged. elements (the short link is destroyed,
the longer one is undamaged)-eorrespond to dotted lines; destroyed elements
(both links are damaged) are not shown. The snapshots are taken at equal time
intervals.-The final time of simulation for Figure 5 (unbroken construction) is
twice smaller than for Figure 6 (broken construction). -

The structures with « = .50 and a = 1.00 (conventional structure) soon
develop cracks and fall apart allowing the projectile to go through (see Figure
6) while the structures with & = 0.10 and o = 0.25 preserve the structural
integrity by dissipating energy and taking the stress away from the point of
impact; this results in the rejection of the projectile (see Figure 5). Notice that
the final time T'fina is twice as small in the last two examples.

The propagation of the damage is due to several factors: the local instabil-
ities of the part of the network that contains a damaged link: the force acting
on neighboring links significantly increases and the damage spreads; the waves
that propagate through the network and initiate the damage in the remote from
the collision point areas.
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4.4 Damage of a massive structure

This section describes the result of simulation of damage/destruction of network
made from the waiting links and compares these structures with the nets from
conventional links.

This series of experiments aims to show the wave of damage and strains in a
“large” domain (the block). The block is supported from the sides, the bottom
is free (see Figure 7). As in the above mentioned simulations of the bridges, the
block is impacted by a projectile that is modeled as an “elastic ball” {Section
4:1). 1t is assumed that the projectile hits the center of the upper side of the
structure moving vertically down with an initial speed vg.

Figure 7 demonstrates propagation of the elastic waves and the waves of par-
tial and total damage of elements of the block. Conventional link structure soon
develops cracks and gets destroyed while the waiting link structure preserves its
structural integrity. Notice that the damage is concentrated in conventional
design and spread in the waiting link design.

5 Discussion

Resume

1. Qur numerical experiments have demonstrated the possibility of control
of the damage process: Waiting links make it-is-pessible|to increase the
resistivity, increase the time of rupture, increase the absorbed energy, and
decrease the level of concentration of damage.

2. The results emphasize the necessity of dynamics simulation versus compu-
tation of the quasi-static equilibrium: one can see (Figure 7] that damage
can start in parts of the structure distant from the zone of impact. De-
velopment of damage is caused by excited waves and local instabilities.

3. We observe that the results strongly depend on parameters of the structure
and projectile.
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Figure 7: Evolution of damage in a lattice with waiting elements. Left field:
lattice from elastic-brittle material; right field: lattice from waiting links, a=.25
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Continuum and discrete model
We use a discrete model of the eonstruetior rather then the continuous equa-

tion for several reasons. First, it models the structures that can be made as we |

described. However, one may ask hov&%simplify the computation of the dynam-
ics using a homogenized description of the networks. The process of damage is
similar to the process of phase transition, since the initial (undamaged) phase
is replaced by the partially damaged state and then by the destroyed state of
structure in a small scale; these processes canibe described as a phase transition
in solids, see for example [3].

However, the observed process is also significantly controlled by intensive
waves caused by vibration of individual masses. The fast-oscillating motion
carries significant energy and it is responsible for initiation of the damage in
the parts of the structure that are not connected to the zone of impact, but are
close to reflecting boundaries. In the continuum model, these oscillation| would
become inﬁniti fast and the corresponding waves would propagate with infinite
speed. It is still unclear how to describe these effects in the homogenized model.

Optimization

The demonstrated structures show the ability to significantly increase the
resistance comparing with conventional materials. However, thﬂ results are
still far away from the limit that can be achieved by optimizing the response
by new design variables: The ratio a and the additional (slack) length (A — L)
of the waiting rod. In principle, these parameters can be separately assigned
for each link, keeping the total amount of material fixed. However, there are
natural requirement of robustness: A structure should equally well resist all
projectiles independently of the point of impact, and should well resist projec-
tiles approaching with various speed. {This| considerationldecreases the number
of controls; it is naturallf to assign the same values of the design parameters
fot all elements in the same level of the structure.

One may minimize the absorbed energy, restricting the weight, admissible
elongation, and the threshold after which the damage starts. In addition, one
needs to restrict the range of parameters of a projectile: Its mass, direction, and
speed. The range of parameters is important: Because of strong nonlinearity,
the qualitative results are expected to be sensitive to them. The optimization
problem is computationally very intensive since the dependence of parameters is
not necessary smooth or even continuous. We plan to address the optimization
problem in the future research.
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