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Abstract The paper deals with simulation of damage spread in special structures
with \waiting links." These structures are stable against dynamic im-
pacts due to their morphology. They are able to transform \partial
damage" through a large region, thereby dissipating the energy of the
impact. We simulate various structures with waiting links and compare
their characteristics with conventional designs.

1. INTRODUCTION

This paper describes protective structures that exhibit an unusually
high dissipation when they are subject to a concentrated (ballistic) im-
pact. Such a structure is de�ned as an assembly (network) of rods con-
nected in knots and submerged into a viscous substance.

During the impact (hit), the kinetic energy of the projectile must be
absorbed in the structure; the structure fails if it is unable to absorb
the energy. While theoretically a material can absorb energy until it
melts, real structures are destroyed by a tiny fraction of this energy
due to material instabilities and an uneven distribution of the stresses
throughout the structure.

We want to �nd a structure that absorbs maximal kinetic energy of the
projectile without rupturing or breaking. The increase of the stability
is achieved due to special structural elements, \waiting links," see [1].
These elements contain parts that are initially inactive and start to resist
when the strain is large enough; they lead to large but stable pseudo-
plastic strains. Structures with \waiting links" distribute the strain over
a large area, in contrast to conventional unstructured solids in which the
strain is concentrated near the zone of an impact.
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2. EQUATIONS AND ALGORITHMS

2.1. WAITING ELEMENTS

Brittle-elastic bar. Consider a stretched rod from a homogeneous
elastic-brittle material. If loaded, this material behaves as a linear elas-
tic, unless the length z reaches a critical value zf , and fails (becomes
damaged) after this. The critical value zf is proportional to the length
L of the rod at equilibrium

zf = L(1 + �f ) (1.1)

where the critical strain �f is a material constant. If the rod is mono-
tonically elongated, the force Fmonotone depends on its length z as

Fmonotone(z) =

�
ks(z=L� 1) if z < zf
0 if z � zf

(1.2)

where k is an elastic modulus and s is the cross-section of the rod.

Damage parameter. Generally, the elongation of an element is
nonmonotone. In order to model the state of damageable rods, we add
a principle: Once damaged, the rod stays damaged forever. Namely, we
assume that the force F in a rod depends on its length z and on the
damage parameter c:

F (z; c) = ks(1� c)(z=L � 1) (1.3)

where K is the elastic modulus. Damage parameter c is equal to zero
if the rod is not damaged and is equal to one if the rod is destroyed.
Development of the damage is described as the increase of the damage
parameter c(z; t) from zero to one. The damage parameter can only
increase in time; the increase occurs only when the length of the rod
exceeds the critical value. The damage parameter stops increasing when
the element is completely damaged. This formalism is similar to the
description of damage suggested in [2] for brittle-elastic continuum.

We suggest describing the increase of the damage parameter by the
simple di�erential equation

d c(z; t)

d t
=

�
vd if z � zf and c < 1
0 otherwise

; c(0) = 0 (1.4)

where zf is the maximal elongation that the element can sustain without
being damaged, and vd is the speed of damage. The speed vd can be
chosen as large as needed.
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Remark 1 The dependence 1.2 corresponds to the discontinuous dam-
age parameter cH that is equal to zero if the element is undamaged and
to one if it is damaged:

cH(z; t) = lim
vd!1

c(z; t):

Consideration of continuously varying damage parameter instead of a
discontinuous one increases stability of the computational scheme.

One can argue about the behavior of the rod with an intermediate
value of the damage parameter. We do not think that these states need
a special justi�cation: they simply express the fact that sti�ness rapidly
deteriorates to zero when the sample is over-strained.

Waiting links. Let us introduce special structural elements {
waiting links that signi�cantly increase the resistivity of the structure
due to their morphology. These elements and their quasistatic behavior
are described in [1]. The link is an assembly of two elastic-brittle rods,
lengths L and � (� > L) joined by their ends. The longer bar is initially
slightly curved to �t. When an increasing external elongation stretches
the link, only the shortest rod resists in the beginning. If the elongation
exceeds the critical value, this rod breaks and the next (longer) rod then
assumes the load replacing the broken one (see Figure 1,left).

               Z                ZL Z
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Figure 1 Left above: The waiting link in the initial state. Left below: The waiting
link after the �rst rod is broken. Right: The force-versus-length dependence for a
monotone elongation

Assume that a unit amount of material is used for both rods. This
amount is divided between the shorter and longer rod: The amount �
is used for the shorter (�rst) rod and the amount 1 � � is used for the
longer (second) one. The cross-sections s1 and s2 of rods are:

s1(�) =
�

L
and s2(�) =

1� �

�
; (1.5)
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The force-versus-elongation dependence in the shorter rod is:

F1(z) = ks1(�)

�
z

L
� 1

�
(1� c1) (1.6)

where c1 = c1(z; t) is the damage parameter for this rod; it satis�es the
equation similar to (1.4)

d c1(z; t)

d t
=

�
vd if z � zf1 and c1(z; t) < 1
0 otherwise

c1(z; 0) = 0 (1.7)

where zf1 = L(1 + �f ).
The longer rod starts to resist when the elongation z is large enough to

straighten this rod. After the rod is straight, the force-versus-elongation
dependence is similar to that for the shorter rod:

F2(z) =

�
ks2(�)

�
z
� � 1

�
(1� c2); if z � �

0; if z < �
: (1.8)

Here F2 is the resistance force and c2 = c2(z; t) is the damage parameter
for the second rod:

d c2(z; t)

d t
=

�
vd if z � zf2 and c2(z; t) < 1
0 otherwise

c2(z; 0) = 0 (1.9)

These equations are similar to (1.6), (1.7), where the cross-section s1(�)
is replaced by s2(�) and the critical elongation zf1 by zf2 = �(1 + �f ).
The di�erence between the two rods is that the longer (slack) rod starts
to resist only when the elongation is large enough.

The total resistance force F (z) in the waiting link is the sum of F1(z)
and F2(z):

F (z) = F1(z) + F2(z): (1.10)

The graph of this force-versus-elongation dependence for the mono-
tone external elongation is shown on Figure 1 where the damage param-
eters jump from zero to one at the critical point zf1 .

One observes that the constitutive relation is nonmonotone. Therefore
one should expect that the dynamics of an assembly of such elements is
characterized by abrupt motions and waves (similar systems but without
damage parameter were investigated in [5, 6]).

2.2. STRUCTURES

Now we describe the model structure: a two-dimensional assembly of
the waiting links. Consider a unilateral triangular grid: each inner point
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has six equally distant neighbors. The distance between neighboring
knots is equal to L. The knots in the boundary (including corners) have
lower number of neighbors. The waiting links connect the neighboring
knots. Initially, the system is in equilibrium and does not have any inner
stress.

If the strain is small everywhere and each link is strained less than
the critical value zf , the system is linear and it models a linear elastic
material. After the �rst rod in a link breaks and is replaced with a longer
one, the net experiences an \irreversible phase transition."

After each break, the network changes its elastic properties and its
equilibrium position. The dynamics of the damage and failure of the
net can be viewed as a series of these transitions. In contrast with
the conventional structure, the waiting links become stronger after �rst
break. Another advantage is that the additional slackness that is added
after the break helps to spread the damage across the structure.

Remark 2 In our model, an assembly of a �nite number of heavy con-
centrated masses and weightless damageable springs is studied instead
of a continuous structure. The model does not require any a priori as-
sumptions on the thermodynamics or mechanical properties of the mod-
eled media. On the contrary, the properties of equivalent media can be
derived by homogenization of the �nite model, as the elasticity equation
can be derived from the mass-spring model (see, for example, [3]). From
this viewpoint, the model is similar to the model by Slepyan [4] of crack
dynamics.

Dynamics and Viscosity. It is assumed that the inertial masses
mi are concentrated in the knots, joined by the inertialess waiting links
(nonlinear springs), therefore the dynamics of the structure is described
by ordinary di�erential equations of motion of the knots. We assume
that the links are elastic-brittle, as described above.

Additionally, we assume that the space between the knots is �lled
with a viscous substance with the dissipation coe�cient . Without
the viscosity, the system never reaches a steady state. On the other
hand, even a slow external excitation leads to intensive waves in the
system caused by breaking of the links. These waves, reected from the
boundaries, cause intensive vibration of the structure and the viscosity
eventually absorbs the energy.

The motion of the ith knot satis�es the equation

mi �zi +  _zi =
X

j2N(i)

Fij(jzi � zjj)

jzi � zjj
(zi � zj) (1.11)
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where zi is the vector of coordinates of the ith knot, j:j is length of the
vector, N(i) is the set of knots neighboring the knot i andmi is the mass
of the ith knot. The force Fij in the ijth link depends on the damage
parameters cij;1 and cij;2 as in (1.10). The set of neighbor knots depends
on the geometric con�guration.

Remark 3 In this model, the masses are permitted to travel as far as
the elastic links permit. In particular, when these links are completely
broken, the concentrated mass can move \between" other masses without
interaction with them. Below in Section 3.1, we discuss a special model
for a projectile that is \large enough" so that it does not slip through the
rows of linked masses.

Waves of damage. The speed of waves in a structure is of the
order of the speed of sound in the material which the structure is made
of (approximately 2,000 m/sec for steel). In our numerical experiments,
we assume that the speed of the impact is much smaller (recall that
the speed of sound in the air is 336 m/sec). A slow-moving projectile
does not excite intensive waves in stable structures, but it does excite
mighty waves of damage in waiting structures. The reason is that the
energy stored in the elastic links suddenly releases when the links are
broken. This phenomenon explains the superb resistance of the waiting
structure: The energy of the projectile is spent to excite the waves of
damage which are spread upon a large area and dissipate.

2.3. NUMERICAL ALGORITHM

Solving the system (1.11) numerically, we rewrite it as an autonomous
system of �rst order di�erential equations:

_zi = pi; (1.12)

_pi =
1

mi
(�i � pi); (1.13)

where

�i =
X

j2N(i)

Fij(jzi � zjj)

jzi � zjj
(zi � zj): (1.14)

Introducing the notation

~x = fzi;pig ; ~f =

�
pi;

1

mi
(�i � pi)

�
;

we get
_~x = ~f(~x):
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We solve the resulting system via the second order Runge-Kutta method

~xn+1 = ~xn +
k

2

�
~f(~xn) +~f(~xn + h~f(~xn))

�
; (1.15)

where k denotes the time step. The stability condition of the numerical
method depends on the speed vd from (1.7), (1.9) of damage propagation
and on the dissipation coe�cient . In all numerical experiments that
follow we establish convergence empirically via time step re�nement.

3. STRUCTURES UNDER A
CONCENTRATED IMPACT

In this section, we describe the resistance and failure of structures
from waiting links impacted by a massive concentrated projectile. The
kinetic energy of the projectile must be absorbed in the structure without
its total failure.

3.1. MODEL OF THE PROJECTILE

The model takes into account penetration of the projectile through
the structure and does not allow \slipping through" the line on knots.
One cannot simply model the projectile as another \heavy knot" in the
structure with an initial kinetic energy: In such a model the projectile
would not be connected with the knots but the immediate neighbors; the
projectile would slip through the net after the failure of the neighboring
links.

In our simulation, the projectile is modeled as an\elastic ball" of the
mass Mp centered at the position zp. Motion of the mass satis�es the
equation

Mp �zp =
X
j

Fpj(jzp � zjj)

jzp � zjj
(zp � zj) (1.16)

where j is the number of the knot in the structure. Equation 1.16 is
similar to (1.11), but the force Fpj is found from a di�erent equation

Fpj(z) =

8><
>:

0 if z > B

ln
�
B�A
z�A

�
if A < z � B

+1 if z � A

(1.17)

In the numerical experiments that follow A = 0:5L; B = 2L.
This model states that the repulsive force Fpj(z) is applied to the knots

when the distance between them and the center zp of the projectile is
smaller than a thresholdB. This force grows when the distance decreases
and becomes in�nite when the distance is smaller than A. This model
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describes the projectile as a nonlinear elastic ball with a rigid nucleus.
When it slips through the structure, the knots are repulsed from its path
causing strain and/or breaking of the links.

3.2. EFFECTIVENESS OF A DESIGN

Comparing the history of damage of several designs, we need to work
out a quantitative criterion of the e�ectiveness of the structure. This
task is nontrivial, since di�erent designs are di�erently damaged after
the collision.

E�ectiveness criterion. We use an integral criterion that is not
sensitive to the details of the damage; All what we are measuring is
the variation of the impulse of the projectile. It is assumed here that
the projectile hits the structure falling down into it. To evaluate the
e�ectiveness of the protective structure, we compute the scaled impulse
d { the ratio in the vertical component pv = p � (0; 1) of the impulse p
of the projectile before and after the impact:

d =
pv(Tfinal)

jpv(T0)j
(1.18)

where T0 and Tfinal are the initial and �nal moments of the observation,
respectively. Notice that scaled impulse d does not vary when the pro-
jectile is not in a contact with the structure; in this sense it is insensitive
to the exact value of Tfinal.

Scaled impulse d shows what portion of the impulse is passed to the
structure from the projectile. It evaluates the structure's performance
using the projectile as the measuring device. An elastic impact with a
rigid body corresponds to the �nal impulse being opposite to the initial
one (d = �1). The absence of the structure correspond to d = 1, because
the impulse of the projectile does not change. If the projectile stops then
d = 0, if it breaks through the structure then 0 < d � 1, and if it is
rejected then �1 � d < 0. The smaller d is, the more e�ective the
structure is.

Other criteria. Other criteria compare the state of the structure
before and after the collision. These criteria are applicable only if the
structure (or its pieces) after the collision reaches a steady state. We
register (i) the percentage of partially damaged links. (ii) the percentage
of destroyed links. The �rst number shows how much damage spreads,
and the second shows what percent of the structure is destroyed. Ideally,
we wish to have a structure in which all elements are partially damaged,
but no element is completely destroyed.
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Figure � % of damaged
links

% of destroyed
links

Scaled �nal
impulse d

Figure 3(a) 0.10 94% 3.8% -0.26

Figure 3(b) 0.25 42% 3.8% -0.32

Figure 3(c) 0.50 4.6% 6.3% 0.54

Figure 3(d) 1.00 0% 8.6% 0.46

Table 1 Damage and/or destruction of a bridge.

Remark 4 The percentage of destroyed links is a rough criterion: It
ignores the positions of the destroyed links.

3.3. BRIDGE-LIKE DESIGNS

Figure 2 The bridge is supported from the sides. It is impacted by a projectile
moving downward.

Finally, we discuss the simulation of damage of a bridge-like truss
structure made from waiting links. We assume that the vertical sides of
the structure are supported and the horizontal sides are free. A projectile
that is modeled as \elastic ball" (3.1) impacts the center of the upper
side of the structure moving vertically down with an initial speed v0
(Figure 2).

The di�erence in the impulse of the projectile before and after impact
shows the e�ectiveness of the structure. The number of destroyed links
also represents the e�ectiveness showing how much the damage is spread.
If the speed is small, the projectile is rejected; otherwise it penetrates
through the structure.

We simulate the damage process of the bridge by varying the param-
eter � (the fraction of material put into the shorter link) while keeping
the other parameters (L;�; zf1 ; zf2 , total amount of material, etc.) the
same for all runs. The results are summarized in Table 1 and Figure 3.
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(a) � = 0:10; Tfinal = 500, projectile is rejected.

(b) � = 0:25; Tfinal = 500, projectile is rejected.

(c) � = 0:50; Tfinal = 250, projectile goes through.

(d) � = 1:00; Tfinal = 250, projectile goes through.

Figure 3 The �nal stages of the impacted bridges. The designs use the same amount
of the materials, but di�er in the parameter �: percentage of material used for the
�rst (shorter) rod in the waiting link.
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One can see from Table 1 that as � decreases from 1:00 (conventional
structure) to 0:10 the percentage of partially damaged links increases as
the percentage of destroyed links decreases making the structure more
resistant. Table 1 also shows that � = 0:25 is optimal for both min-
imizing the number of destroyed links and minimizing the scaled �nal
impulse d (see the discussion in Section 3.2).

Figure 3 shows the �nal stages of the impacted bridges. Intact waiting
elements (both links are undamaged) are aquamarine; partially damaged
elements (the short link is destroyed, the longer one is undamaged) are
blue; destroyed elements (both links are damaged) are purple. The struc-
tures with � = :50 and � = 1:00 (conventional structure) soon develop
cracks and fall apart allowing the projectile to go through (see Figures
3(c), 3(d)) while the structures with � = 0:10 and � = 0:25 preserve
the structural integrity by dissipating energy and taking the stress away
from the point of impact; this results in the rejection of the projectile
(see Figures 3(a), 3(b)). Notice that the �nal time Tfinal is twice as
small in the last two examples.

The propagation of the damage in the bridge is due to several factors:
(i) local instabilities of the part of the network that contains a damaged
link; (ii) the increase of force on neighboring links which allows the
damage to spread; (iii) the waves that propagate through the network
and initiate damage in areas remote from the point of collision.
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