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Summary
A method is suggested to bound the anisotropic effective stiffness and extension tensors of a multiphase composite made of expandable
materials. The bounds are valid for composites of any microstructure. It is shown that the expansion coefficients vary an ellipsoid
which parameters depend on properties of the phases, their fractions, and the effective stiffness of a composite. The obtained tensorial
inequalities generalize bounds by Schapery, Rozen and Hashin, and Gibiansky and Torquato. Particularly, the bounds for the mixtures
with voids are obtained.

INTRODUCTION

This paper suggests a method for bounds for a anisotropic effective complianceS� and anisotropic extension tensor��
of a composite. One meets these problems dealing with composites made of materials that experience phase transition
or thermal expansion. The bounds are independent of the structure of a composite and depend only on the moduli of
the phases and their volume fractions. The bounds forS� are independent of the extension tensors of the phases, but the
bounds for�� depend on the compliance and expansion coefficients of the phases and on the effective compliance tensor
S� of a composite.
The bounds for effective compliance tensorS� are well-studied starting from the classical bounds by Reiss, Voigt, and
Hill, they where tighten for isotropic materials by Hashin and Shtrikman and Walpole, then by Cherkaev and Gibiansky.
The bound were tighten by exploring the differential constraints on the stress and strain tensors; the method for accounting
for these constraints is now called the translation method [5].
The bounds for expansion coefficients are much less developed. The existing bounds [1, 2, 3] deal with the isotropic
case, and the bounds by Gibiansky and Torquato [3] are extremely close to the results of numerical optimization by
Sigmund and Torquato [4]. The complicated algebraic structure of the isotropic bounds makes their generalization for
general anisotropic case not too attractive. However, we show that the general bounds are given by rather elegant tensorial
expressions of a clear algebraic structure.
Study of anisotropic multiphase thermal expansion is important for applications. Most composites (such as the laminates)
are anisotropic. The bounds for anisotropic expansion estimates the maximum and minimum of the effective expansion
in any direction; they can be used in structural optimization.

THE PROBLEM

The constitutive relation for an expandable material subject to a transformation and an elastic load is described as

� = S : � + �; r � � = 0; r� (r� �)T = 0 (1)

where� is the stress tensor,� is the stress tensor,S is the fourth-order tensor of elastic compliance (the inverse to the
stiffness tensorC, S = C�1, and (:) is the convolution. The expansion tensor� is a symmetric second rank tensor
of deformation due to the temperature change or the phase transition. The equation (1) is normalized with respect to
the temperature change. For isotropic thermo-elastic materials,� is a spherical tensor; for materials under austenite-
martensite transformation,� is close to a deviatoric tensor. The energy of the expandable material can be presented in
two mutually dual forms

W�(C;�; �) =
1

2
� : C : �� � : C : �+ cv; W�(S; �; �) =

1

2
� : S : � + � : �� cp

where the difference between the parameterscv andcp is given bycv � cp = � : C : � due to the duality relations.
A composite with perfect bonds between phases is characterized by the effective relation between volume averaged stress
h�i and stainh�i that is similar to (1) while the tensorsS and� are replaced by the tensors of effective moduliS� and
��, respectively. The expression for the energy changes accordingly. The effective tensors depend on the moduli and
expansion coefficients of the mixed materials and on microstructure, but are independent of the acting fields.
The bounds for the effective moduli are independent of the microstructure; they are represented by the inequalities of the
type

G(S�; ��; Sph; �ph;mph) � 0

wheremph = fm1; : : :mNg are the volume fractions of the phases in the composite,Sph = fS1; : : : SNg and�ph =
f�1; : : : �Ng are the moduli of the phases. In order to obtain the bound, we deal with the following questions: (i) What
functional should be estimated? (ii) What expression bound the functional from below? (iii) How to pass from the bound
on the functional to the bounds on the effective coefficients? (iv) What are the bounds when void is presented in the
mixture?



THE METHOD

We estimate from below the sumW� +W� of the energy and its dual form by using the translation method [5]. Namely,
we neglect the differential constraints in (1) replacing them with inequalities of the typeh� : T� : �i � h�i : T� : h�i
which are considered as algebraic constraints. Here,T� is the matrix translator (for explicit form ofT , see [5]): A
nonpositively defined matrix that nevertheless provides the above inequality due to differential constraints on the field�.
The minimization problem becomes algebraic, and the standard minimization procedure yields to the inequality

W�(C�; ��; h�i) +W�(S�; ��; h�i) �
1

2
zTPBz + qTBz + rB ; 8z = (h�i; h�i)T (2)

where the tensorsPB = PB(mph; Cph) andqB = qB(mph; Cph; �ph) of the fourth and second rank, respectively, and
the constantrB = rB(mph; Cph; �ph) are explicitly calculated. The left-hand side of the (2) is also a quadratic function
of averaged fieldsz which coefficients are effective propertiesC�; �� of the composite. Eliminating the dependence ofz,
we obtain the bounds for the effective properties as it is described below.

NEW BOUNDS

The inequality (2) yields to the following inequalities for the effective coefficients. A matrix inequality

�
S� + T� T��
T�� C� + T�

�
� PB � 0 8T :

�
Si + T� T��
T�� Ci + T�

�
� 0; PB =

*�
S + T� T��
T�� C + T�

�
�1
+
�1

; (3)

wherei = 1; : : : ; N andT�� andT� are the translators similar toT� , is obtained from (2) whenkzk ! 1. Inequality (3)
does not depend on�ph and coincides with the translation bound for the effective elastic tensor. It contains, as particular
cases, the Hill bounds and the Hashin-Shtrikman-Walpole bounds for isotropicS�. Notice that tensorial inequality (3)
naturally includes both the upper and lower bounds forS�.
The range of�� is determined by the scalar inequality

(�� � �E(T )) : PE(T ) : (�� � �E(T )) � rE(T ) 8T as in (3): (4)

It is obtained from the requirement that the minimum of the difference between the left- and right-hand sides of (2) over
z is nonnegative. The explicitly calculated coefficients: fourth-rank tensorPE , the second-order tensor�E , and the scalar
rE depend on the properties of the phases, volume fractions, and effective tensorS�. For each admissible tensorT , the
coefficients of the effective tensor�� are bounded by an ellipsoid centered at�E(T ), and the bound (4) states that they
belong to the intersection of all such ellipsoids.

Special cases
The results for the mixtures with voids are easily obtained. This case poses difficulties for previously suggested bounds,
see [4]. In this case, the coefficients in (4) are simplified to

PE =
�
~S� � h ~S�1i�1

�
�1

; �E = h ~S�1i�1 : hS�1 : �i; rE = h� : S�1 : �i � h� : S�1i : h ~S�1i�1 : hS�1 : �i

where~S = S + T�.
The previously obtained bounds by Schapery [1], Rozen and Hashin [2], and Gibiansky and Torquato [3] (see also Sig-
mund and Torquato [4] follow from our bounds. Particularly, for the two-phase mixtures, the constantrE vanishes which
leads to the explicit relation�� = �E , which agrees with the result by Rozen and Hashin [2]. If the effective tensorS�
approaches its bound, some eigenvalues of tensorPE go to infinity and the effective expansion coefficients tends to the
coefficients of�E , which agrees with the result by Gibiansky and Torquato [3].
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