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Detecting the stress �elds in an optimal structure II:
Three-dimensional case

A. Cherkaev and _I. K�u�c�uk

Abstract This paper is the second part of the investiga-
tion on stress �elds in an optimal elastic structure. In the
�rst part of this research, Cherkaev and K�u�c�uk (2001),
we derived the necessary conditions for the stress �eld
in optimal two-dimensional elastic structures and intro-
duced a method to check if a structure is optimal. In
this paper, we turn our attention to conditions of the
stress �eld in optimal three-dimensional elastic struc-
tures. We restate the necessary conditions for minimiza-
tion of the stress energy in three-dimensional elasticity.
We also show that the conditions are realized in optimal
microstructres.

1

Introduction

The structures for optimal three-dimensional elasticity
were introduced and investigated in the papers: Gib-
iansky and Cherkaev (1987); Lipton and Diaz (1995);
Cherkaev and Palais (1997); Allaire et al. (1997); Olho�
et al. (1998); K�u�c�uk (2001). The authors used the suf-
�cient conditions (translation method) to compute the
lower bound of the energy and demonstrated that the
guessed structure correspond to this bound; this demon-
stration proved simultaneously the optimality of struc-
tures and bounds.

Here we investigate the �elds inside of optimal struc-
tures using classical technique of the calculus of varia-
tions. The method of structural variation was introduced
in books Lurie (1975, 1993); we use a version of it devel-
oped in a book Cherkaev (2000).

The stress �elds within an optimally designed elastic
structure satis�es certain conditions. These conditions
show that the homogenized constitutive equations are on
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the boundary of ellipticity. Accordingly, the homogenized
energy of an optimally designed elastic structure is on the
boundary of quasiconvexity (see, for example, Cherkaev
(2000)). Here, we derive and analyze the pointwise �elds
in optimal structures.

Most of the calculations are performed using MAPLE.
If the derived formulas are too bulky, we do not dis-
play them, here; instead we refer to �gures and the algo-
rithm given in the Appendix. Detailed calculations can
be found in K�u�c�uk (2001).

2

Formulation of the Problem

Geometry Consider a domain 
 that is divided into
two subdomains 
1 and 
2. Suppose that the subdo-
mains 
i are occupied by isotropic materials with bulk
and shear moduli of �i and �i, respectively. Suppose also
that the volumes of 
1 and 
2 are �xed:

Z



�d
 =M1

where �(x) is the characteristic function de�ned as fol-
lows

�(x) =

�
0 if x 2 
1;

1 if x 2 
2:
(1)

Finally, assume that 1 and 2 are the cost of Material

1 and Material 2, respectively.

Elasticity Consider the elastic equilibrium in the do-
main 
, assuming the absence of body forces; a load is
applied from the boundary �T of 
. A linearly elastic
structure at equilibrium satis�es elasticity equations;

r � �(x) = 0; � =
1

2
(ru+ (ru)T );

�(x) = S(x)�(x); (2)

where �(x), and �(x) are three-by-three stress and strain

tensors respectively, r =
�

@
@x
; @
@y
; @
@z

�
is the gradient,
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and S(x) is the compliance tensor, carrying information
about the material properties and associating two �elds.

The energy of the elastic equilibrium is equal to

G(�;�) =
1

2
�(x) : S(x) : �(x); (3)

second-rank stress tensors �(x) belong to the set Fs(x)
of statically admissible stress �elds

Fs(x) = f�(x) j r � �(x) = 0 in 
;

�(x)n(x) = t(x) on �T g: (4)

Here, t(x) is given surface tractions; n(x) is the normal
vector to the surface; and �T is the surface where the
traction is applied.

A fourth-rank material compliance tensor S(x) be-
longs to the set of admissible compliance tensors, Sad;

S(x) = �(x)S1(�1; �1) + (1� �(x))S2(�2; �2); (5)

�i and �i are shear and bulk moduli of the i-th material
in the domain 
.

The equilibrium of the structure corresponds to the
principle of minimum of total stress energy; equations
(2) are the Euler-Lagrange equation for the variational
problem

E(�) = min
�(x)2Fs(x)

Z



G(�;�)d
; (6)

where a solution �(x) delivers the the minimum of the
total stress energy (or maximum sti�ness problem).

Optimal design Consider now a problem of optimal
structure: Find �(x) such that

J = min
�(x)

W(�); W(�) = [E(�)+1�+2(1��)]; (7)

It is expected that a solution to the optimization
problem (7) includes �ne-scale oscillations of the con-
trol S(x) (see, for example, Cherkaev (2000)); in other
words, the optimally designed structure is a composite

or a limit of rapidly oscillating sequences of the orig-
inal controls. The optimal distribution of the two ma-
terials can be described by a fastly oscillating sequence
between the domains 
i. To deal with the fastly oscillat-
ing solutions, relaxation techniques are developed. The
relaxation technique essentially replaces the original op-
timization problem with another one that has a classical
solution.

Here we investigate the �elds in the pure materials
regardless of how wiggle is the line dividing the regions
of them. Therefore, we do not use homogenization until
�nal interpretation of results.

2.1

Notations for Calculations of Three-dimensional

Elastic Composite

Calculations in a three-dimensional problem can be te-
dious unless appropriate notations are introduced. There-
fore, the following basis is introduced to transform fourth-
and second-rank tensors into six-by-six matrices or six-
by-one vectors, respectably.

b(1) = i1 
 i1; b(5) = 1p
2
(i1 
 i3 + i3 
 i1);

b(3) = i3 
 i3; b(4) = 1p
2
(i2 
 i3 + i3 
 i2);

b(2) = i2 
 i2 b(6) = 1p
2
(i1 
 i2 + i2 
 i1);

(8)

where

i1 = (1 0 0)T ; i2 = (0 1 0)T ; and i3 = (0 0 1)T : (9)

are �xed reference Cartesian coordinates and dyadic prod-
uct of two vectors, 
, is de�ned as

G = a
 b;

= a � bT or (10)

Gij = aibj

which is a second-rank tensor. Similarly, the dyadic prod-
uct ofmth-rank tensor and kth-rank tensor results in cor-
responding to (m+k)th-rank tensor. The transformation
rules

Dij = b
(i)
��S����b(j)�� ; i; j = 1; 2: (11)

allow to express any stress tensor � as a six-dimensional
vector in the basis (8):

� = (�11 �22 �33
p
2�12

p
2�13

p
2�23)

T : (12)

Together with the notation (12), we shall use the follow-
ing simpler notation in some calculations hereafter

s = (s1 s2 s3 s4 s5 s6)
T : (13)

Similarly, any fourth-rank isotropic compliance tensor S
can be represented as six-by-six matrix

Di =

2
66666666664

d1 d2 d2 0 0 0

d2 d1 d2 0 0 0

d2 d2 d1 0 0 0

0 0 0 d3 0 0

0 0 0 0 d3 0

0 0 0 0 0 d3

3
77777777775

(14)

where

d1 =
1

9

3�i + �i

�i�i
; d2 = � 1

18

3�i � 2�i
�i�i

; and d3 =
1

2�i
:
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The matrix Di is nondiagonal. Although we used a new
notation D for a transformed compliance tensor, S will
also be used for transformed compliance tensors hereafter
in accordance with the usual convention.

3

Variations

3.1

The Scheme of the Weierstrass Test

A necessary condition of optimality, namely, the Weier-
strass test is used to investigate the optimal design. This
test deals with the increment of the functional caused by
the special structural variation.

To perform the variation, we implant in�nitesimal el-
lipsoidal inclusions �lled with an admissible material Sn
at a proximity of a point x in the domain 
h that is
occupied by a host material Sh. We compute the in-
crement: The di�erence between the cost of the prob-
lem in two con�gurations with and without inclusion. If
the examined structure is optimal, then the increment
is nonnegative. The increment depends on the shape of
the region of variation and must stay nonnegative for all
inclusions; therefore the strongest condition corresponds
to such a shape that the increment reaches its minimal
value which must be also nonnegative. If this condition is
violated, then the cost could be reduced by a variation,
and the structure fails the test. The Weierstrass test was
suggested in the described form by Lurie in the book
Lurie (1975).

3.2

Variation of Properties: Three Dimensions

To calculate the variation of properties, add a quasiperi-
odic dilute composite of third-rank laminates to mate-
rial Sh in a neighborhood of the point x in accord with
Cherkaev (2000). In these laminates, the inclusions are
made of material Sn, and the envelope is made of mate-
rial Sh. In other words, we construct a third-rank lam-
inate from the isotropic host medium contained in the
envelope. This matrix laminate composite of third-rank
is characterized by its e�ective tensor S� given in Gibian-
sky and Cherkaev (1997a), (see also Francfort and Murat
(1986) and Cherkaev (2000)) as

S�(m) = Sh +m
�
(Sn + Sh)

�1 + (1�m)N 3rd(�)
��1

;

(15)

where m is the volume fraction of the nuclei material;
the matrix Si in the basis of (8) is given by (14); and
matrix N 3rd determines the geometry of the laminate:

N 3th(�) =
3X

i=1

�iNi;

3X
i=1

�i = 1; �i � 0: (16)

where

Ni = pi(p
T

i S1pi)
�1pTi : (17)

The matrix projector pi maps the stress vector (4) into
its discontinuous part; it depends on the normal n to the
layers in the structure

pi = pi(n): (18)

Projection matrix pi in Ni's of (16) are given by (see
Gibiansky and Cherkaev (1997a)):

p1 =

2
6666664

0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

3
7777775
; p2 =

2
6666664

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

3
7777775
; and p3 =

2
6666664

1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0

3
7777775
:

(19)

In (19), the projection matrices point to the discontin-
uous components of stress �elds in (4). The lamination
directions nk in the structure (18) are directed along ik .

Substituting (14), (16), and (19) into (15); and using
the following notations for �'s:

�1 = �; �2 = � and �3 = 1� �� �

in (15) result in

N 3rd =

2
6666664

(1� �)e1 �3e2 �e2 0 0 0
�3e2 (1� �)e1 �e2 0 0 0
�e2 �e2 (� + �)e1 0 0 0
0 0 0 �3e3 0 0
0 0 0 0 �e3 0
0 0 0 0 0 �e3

3
7777775
:

(20)

where �3 = 1� (�+ �); e1 = 4 (3�h+�h)�h3�h+4�h
;

e2 = 2 (3�h�2�h)�h3�h+4�h
; and e3 = 2�h. The eigenvectors of

N 3rd are computed in the basis (8) that coincide with
the directions of lamination in R3 ; the inner parameters
�i are responsible for relative elongation (intensities) of
the inclusions.

Dilute inclusions The increment �S caused by the ar-
ray of in�nitely dilute nuclei with material Sn and in-
�nitesimal volume fraction �m(x) is given by

�m(x) =

�O(�); if kx� x0k < �;

0; if kx� x0k � �:
�m 2 C1(
); (21)
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similarly to the two-dimensional case. The e�ective prop-
erty of this composite becomes S�(m+ �m); it is calcu-
lated by Taylor's expansion;

S�(m+ �m) = S�(m) + �m
d

dm
S�(m) + o(�m):

If we substitute the value of S�(m) from (15) into the
last equation and compute

lim
m!0

S�(m+ �m) = Sh + �S;

we obtain

�S = V�m+ o(�m); (22)

where

V =
�
(Sn � Sh)�1 +N 3rd(�)

��1
: (23)

Degeneration In contrast to the two-dimensional case,
in three dimensions we meet several degenerative cases.
Let us discuss them. The variation of (15) depends on two
structural parameters �1 and �2 (or, in other notations,
on � and �), such that

�1 � 0; �2 � 0; �1 + �2 � 1:

If one of the �i's is zero or if �1 + �2 = 1, the struc-
ture degenerates into a second-rank laminate with par-
allel cylindrical inclusions.

The e�ective tensor S�(m) of a second-rank laminate
is similar to (15) and is given by the formula:

S�(m) = Sh +m
�
(Sn � Sh)�1 + (1�m)N 2nd

i (�)
��1

;

(24)

where N 2nd
i (�) is

N 2nd
i = (�j � �ij�i)Nj ; i; j = 1; 2; 3: (25)

Nj are de�ned in (17), and j is index of summation.
Note that Einstein summation is used in (25), i.e., there
is a summation on the repeated index j; �ij is the Dirak
�-function:

�ij =

�
1; if i = j;

0; if i 6= j:
(26)

If both �1 and �2 are zero (or if one of them is equal to
one), the structure degenerates into a �rst-rank laminate
for which N 1st

i (�) =N3.

Calculations of �S these degenerative variations are
performed similarly to (23), usingN 2nd computed in the
expressions (25) or N 1st, respectively.

3.3

Increment

The increment of the functional consists of the direct cost
caused by change of quantities of the used materials and
the increment of energy. The �rst term is easy to com-
pute: Replacing the host material Sh (with the speci�c
cost n) with the material of Sn (with the speci�c cost
h) leads to the change in the total cost.

Variation of energy Let us compute the variation of
energy in (6) caused by the Weierstrass-type variation of
properties �S. For simplicity, we consider such a varia-
tion that the axes of orthotropy of �S are codirected with
the principal axes of the stress tensor � (the expression
for �S is given in (22)).

The increment of the energy �E is given by the quadratic
form

�E(�; �) = sT�S(�; �)s; (27)

and the total cost of the variation is

�J �m = (h � n + �E(�; �)) �m: (28)

The increment (27) depends on the shape of the inclu-
sions, speci�cally, on control parameters � and � (elon-
gations) of the inclusions in the laminates. In the degen-
erative cases, the number of the parameters decreases.

Orientation of the inclusions As in two-dimensional
case, we assume that the directions of laminates in the
trial structure are codirected with the principal axes of
the stress tensor. We codirect our labor coordinate sys-
tem with the principle axes of the stress; this yields to

s4 = s5 = s6 = 0:

Substituting the expressions for s and �S(�; �) (see (13)
and (23)) into (27) transforms the increment in the form:

�E(�; �) = sT�S(�; �)s;

= sT V s �m;

=

�
V1s

2
1 +V2s

2
2 +V3s

2
3 + 2V4s1s2

+2V5s1s3 + 2V6s2s3

�
�m: (29)

One can check that the coe�cients Vi depend on controls
� and � as follows:

Vi =
1

K

�
V1
i (�h; �n; �h; �n)�

2 +V2
i (�h; �n; �h; �n)��

+V3
i (�h; �n; �h; �n)�

2

�
(30)

where K is a quadratic polynomial of � and �.
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3.4

The Most Sensitive Variations

The analysis is similar to the two-dimensional case. If
the design is optimal, then all variations lead to the non-
negative increment �J :

�J (Si;Sj ;�j) = h � n + �E(�; �) � 0; 8�; � 2 �

(31)

where �J (Si;Sj ;�i) is a variation caused by adding ma-
terial Sj into material Si; �i is the �eld in material Si,
and the set � is

� = f�; � j0 � � < 1; 0 � � < 1 and �+ � = 1g:
(32)

If the condition (31) is violated, then the cost is reduced
by the variation, and the design fails the test. Therefore,
the optimal (most \dangerous") increment of energy (27)
is

E = min
�;�2�

�E(�; �): (33)

If

E > 0; (34)

then the increment �J > 0 for any variation and the
structure satis�es the test.

3.4.1

Calculations of Optimal Parameters

Since the geometric shape of the variation is adjusted
to the �eld �, we consider optimal parameters � and
� as functions of �. Here we compute the derivative of
�E(�; �) given in (27), �nd optimal parameters, and cal-
culate the optimal increment.

First we compute the derivative of the increment with
respect to � and � in the form:

@�E(�; �)

@�
= sT

@V(�; �)

@�
s;

= �sTV(�; �)
@C(�; �)

@�
V(�; �)sT; (35)

where C�1 = V; introduce a new variable v:

V(�; �)sT = v (36)

where v = (v1 v2 v3 v4 v5 v6). Since the variables s4; s5
and s6 are equal to zero, v4 v5 and v6 are zeros too, as
it follows from (36). Therefore, we will not pursue the
terms involving v4; v5; and v6 hereafter.

After substituting the new variable v into (35), we
obtain

@�E(�; �)

@�
= �vT @N

3rd(�; �)

@�
v; (37)

which amounts to the following quadratic equation for v

vT
@N 3rd(�; �)

@�
v = 0: (38)

Now we can repeat the same calculations for the deriva-
tive of �E(�; �) with respect to � which amounts to the
second quadratic equation:

vT
@N 3rd(�; �)

@�
v = 0: (39)

The next step is to solve the system of these equations
(38) and (39) to determine the vector v. Substituting this
solution into (36) provides optimal values for � and �.
We �nd that v belongs to one of the following sets;

V1 = V2 =

�
vjv1 = v1; v2 = v3

�
; (40)

and

V3 =

�
vjv1 = U; v2 = v2; v3 = v3

�
; (41)

where

U = �1

2

6v22�h + 2v22�h � 6v23�h � 2v23�h
(v2 � v3)(3�h � 2�h)

: (42)

When one substitutes the vectors from V1 into (36),
the optimal �'s and �'s are obtained as follows

�i =
1

6

N
�i

Di

; �i =
1

6

N
�i

Di

; (43)

where N�i ; N�i ; Di for i = 1; 2 are de�ned in Appendix
A, and � and � are from the set � given in (32).

Similarly, when vectors from set V3 are substituted
into (36), the following optimal values of �'s and �'s are
obtained

�j =
1

6

N
�j

Dj

; �j =
1

6

N
�j

Dj

; (44)

whereN�j ; N�j ; Dj for j = 3; 4 are de�ned in Appendix
A, and � and � are from the set � given in (32).

Degeneration If one of the parameters �i or �i com-
puted in (43) and (44) is equal to zero or negative or
if their sum is greater than one, then the optimal varia-
tion corresponds to a second-rank laminates. In this case,
computation of the optimal variation �E(�) follows from
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(27) where (25) is used for the calculation of (23). Conse-
quently, taking the �rst derivative of �E(�) with respect
to � gives the following minimizing values of � for dif-
ferent cases.

Case A: If �3 = 0, then �1 = �, �2 = 1 � � in (15).
Thus, the optimal � is given by

�2R31 =
1

2

A1�x +B1�y + C1�z

D1(�x + �y) + C1�z
;

(45)

�2R32 =
B2�x

(�x � �y)
+

C2�y

(�x � �y)
+

A2�z

(�x � �y)
:

Case B: If �2 = 0, then �1 = �, �3 = 1 � � in (15).
Thus, the optimal � is given by

�2R21 =
1

2

A1�x + C1�y +B1�z

D1(�x + �z) + C1�y
;

(46)

�2R22 =
B2�x

(�x � �z)
+

A2�y

(�x � �z)
+

C2�z

(�x � �z)
:

Case C: If �3 = 0, then �2 = �, �3 = 1 � � in (15).
Thus, the optimal � is given by

�2R11 =
1

2

C1�x +A1�y +B1�z

C1�x +D1(�y + �z)
;

(47)

�2R12 =
A2�x

(�y � �z)
+

B2�y

(�y � �z)
+

C2�z

(�y � �z)
;

where

A1 = 3�h�n + 2�n�h + 2�n�h;

B1 = 2�n�h � 3�n�h � 6�h�h;

A2 =
1

3

(�h + 3�n + 3�h)(��n�h + �n�h)

�h(��h + �n)(�n � 3�h � �h + 3�n)
;

B2 =
1

6

B3

�h(��n + �h)(��h + �n � 3�h + 3�n)
;

C2 =
1

6

C3

�h(�n � �h)(�n � �h � 3�h + 3�n)
;

B3 = (�2�2h�n + (14�n�h � 6�n�n + 3�h�n)�h

�3�n�h(�2�h + 2�n + 3�n))

C3 = (2(�n � 3�h)�
2
h + (6�n�n + 15�h�n � 18�2h

�2�n�h)�h � 3�n�h(3�n � 4�h))

C1 = 2(�n�h � �n�h); (48)

D1 = (�n�h � 3�h�h + 2�n�h):

Here, �2Rji denotes the optimal value of �i when �j = 0
and the variation degenerates into a second-rank lami-
nate. The energy increment is obtained by substitution
of the optimal values �2Rji into (27). The optimal varia-
tion becomes a �rst-rank laminate if two of the optimal
values of �i are zero or negative.

3.5

Necessary Conditions

The described condition (34) is satis�ed in permit a re-
gion of �elds in materials, and they are violated if the
�elds are outside of this permitted region. To describe
the permitted regions we use the results of the Section
3.4.1. The range of admissible �elds in an optimal struc-
ture is derived similarly to the two-dimensional case.

In this section, we consider a well-ordered case, �1 <
�2 and �1 < �2. We �x the volume fraction of the �rst
material m1 = m in the following calculations.

1. Suppose that a trial in�nitesimal inclusion of the sec-
ond (strong) material S2 is placed into the domain
1

occupied with the �rst (weak) material. The neces-
sary condition �J (S1;S2;�1) is obtained by formula
(31) as

�J (S1;S2;�1) = 2 � 1 + E(S1 ;S2;�1) � 0; (49)

where �1 is the tested �eld in the domain 
1.
To calculate E(S1 ;S2;�1), we use the algorithm given
in Appendix (C). The inequality (49) depends only on
the stress �eld �1 since S1 and S2 are given. The set
of �elds �1 that satis�es the condition (49) is called
F1. If �1 2 F1, then the weak material S1 may be
optimal in the sense that it cannot be denoted by the
described variation. When the increment due to the
inclusion of weak material into the strong material is
calculated, the formula (23) is used where subscript

h is 2.
2. Similarly we analyze the necessary condition of opti-

mality of the (strong) material S2. The corresponding
increment �J (S2;S1;�2) is due to the inserting of a
trial inclusion of the �rst (weak) material S1 into the
domain 
2 occupied by the second (strong) material;
the condition is given in (31).

�J (S2;S1;�2) = 1 � 2 + E(S2 ;S1;�2) � 0; (50)

where �2 is the �eld at a point of the domain 
2. To
calculate E(S2 ;S1;�2) we use the algorithm given in
Appendix (C). The set of admissible �elds �2 that
satis�es the condition (50) is called F2. If �2 2 F2,
then the strong material S2 is optimal in the sense
that it cannot be denoted by the described variation.

Remark 1 When the increment due to the inclusion of
strong material into the weak material is calculated, the
formula (23) becomes

�S = �V�m+ o(�m); V =
�
(S2 � S1)�1 +�

��1

where subscript h in (23) is equal to one.
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Fig. 1 Assembly of bounds: The interior region (intersection
of ellipsoids) de�nes the bound of the set F1 (stress in the
weak material), the outer region de�nes the zone F2 of op-
timality of the stress in the strong material, and the region
between de�nes the forbidden region. One of the materials
has zero Poisson ratio.

The union F = F1[F2 of the two permitted sets does
not coincide with the whole range of �. The remaining
part is called the forbidden region, Ff . In this region,
none of the materials is optimal. An optimal structure
should be constructed in such a way that the local �elds
never belong to Ff ; no matter what the external loading
is.

The calculation of the set F is based on the calcula-
tions of the sets F1 and F2 in each material S1 and S2
determined by (49) and (50), respectively.

4

Results

4.1

Range of Admissible Fields

The analysis above shows that the boundary of F is an
composition of three parts: An elliptical, cylindrical and
plane part. The elliptical and the cylindrical parts re-
spectively are given by the following expressions

E1 = A3�
2
i +B3(�

2
j + �2k) = 1; (51)

E2 = A4�
2
i +B4(j�j j+ j�kj)2 = 1; (52)

where triplets i; j and k corresponds to some directions of
x; y; z axes. The constants are determined by the materi-
als' elastic properties; they correspond to optimal values
of E(�; �) at � = 0, or � = 1.

0

0
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z

15

−15

xσ

15

−15

σ

σ

Fig. 2 The black triangular region is the third-rank lam-
inate. White and gray regions show where the second and
�rst-rank laminates are optimal, respectively. Both of the ma-
terials have nonzero Poisson ratio.
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Fig. 3 The interior region of the small ellipsoid de�nes the
bound of the set F1, and the region between the ellipsoids
de�nes the forbidden region when one of the materials has
nonzero Poisson ratio.

Remark 2 The formula (52) shows the case when Poisson
ratio of materials is zero. This formula is modi�ed when
the materials have an arbitrary Poisson ratio. In this
case, the cylindrical and ellipsoidal parts are inclined on
the angle de�ned by the Poisson ration.



8

x

y

zσ

10

−10

−10

0

010

σ

σ

Fig. 4 The black triangular region is the third-rank lam-
inate. White and gray regions show where the second and
�rst-rank laminates are optimal, respectively.
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Fig. 5 The intersection of three ellipsoids de�nes the bound
of the set F2 when one of the materials is void.

The plane component of the boundary of F is:

E3 = D2(j�xj+ j�y j+ j�z j)2j = 1 (53)

where the constant coe�cient D2 is determined by the
material constants and it corresponds to stationary val-
ues of � and � in (43)�(44). Thus, the boundaries of the
forbidden region has three components; the plane, cylin-
drical and elliptical segments. Note that the components
E1 = 1; E2 = 1 and E3 = 1 together de�ne the sur-

σ

σ

σ

y

x

z

Fig. 6 The interior region of the small ellipsoid de�nes the
bound of the set F1, and the region between the ellipsoids
de�nes the forbidden region when one of the materials is void.

xσ
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–8 –6 –4 –2 2 4 6 8

Fig. 7 Two-dimensional case; Region F1 lies inside of the
region given by crosses, while region F2 lies outside of
the region given by circles. The forbidden region Ff lies
between the regions.

face which are a rotationally invariant norm of the stress
tensor.

The graph of the permitted �elds is presented in Fig-
ure 1{Figure 6 for three di�erent pairs of values for elas-
tic moduli; one of the two materials has zero Poisson ra-
tio, both materials have nonzero Poisson ratio and one of
the materials is void. Briey, the weak material is present
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at the intersection of the three parts mentioned above,
and the strong material is observed at the union of three
components.

Now we can formulate the underlying principle of
sti�ness optimization by a two-material structure.

4.2

Optimal Structures

A three-dimensional generalization of the �gure obtained
for two dimensions in Figure 7 is given in Figure 2, and
Figure 4. In Figure 7, we observed Cherkaev and K�u�c�uk
(2001) that region F1 lies inside of the region given by
crosses, while region F2 lies outside of the region given
by circles and the forbidden region Ff lies between the
regions.

Similarly, the region of F1 in three-dimensional case
is observed as the inner region of the small ellipsoids in
Figure 1, Figure 3 and Figure 6; and the region of F2 is
observed as the outer part of the ellipsoids in Figure 1,
and Figure 5. Consequently, the forbidden region Ff ap-
pears as a region between the big and small ellipsoids in
the �gures of Figure 1, Figure 3 and Figure 6.

The optimal structures are not unique in contrast
with the regions of optimal �elds. It is a known set of op-
timal geometries that provides the �elds inside of them
on the boundary of the permitted regions due to ad-
justment of the inner parameters. These are the same
third-rank laminates that we have described earlier.

Suppose that an optimal structure is submerged into
a homogeneous external �eld �. If the external �eld be-
longs to F1 or F2, then the optimal design consists of
one material S1 or S2. The �eld jumps over the forbid-
den region along the boundary surface between zones
occupied with the strong and weak materials. It turns
out that such jumps are possible only if the boundary be-
comes a curve with in�nitely many wiggles, see Cherkaev
(2000). As a result, the optimal structure becomes a com-
posite in which the �elds belong to the boundaries of
F1 = constant1 or F2 = constant2 at each point. To
provide this feature, the volume fraction and the inner
parameters vary together with the average stress �eld.

Fields in optimal third-rank laminates If the exter-
nal �eld belongs to the pyramid supported by the black
triangular regions in the Figure 2, Figure 4, and Figure 8
then the optimal structure corresponds to nondegenera-
tive laminates of the third rank. The directions of lam-
inates are determined by the eigenvectors of the stress
�. The anisotropy of the structure balances resistance
against stresses acting in the orthogonal directions with
di�erent magnitudes. The �elds in the layers of the �rst,
second, and third rank in the strong (wrapping) mate-
rials correspond to three points on the plane triangles
shown in black, the �eld in the �rst (inner) layer cor-
responds to the vertex of the triangle, the �eld in the
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Fig. 8 One of the materials is void. The boundary of the
permitted region of the strong material. Observe that the
components of the boundary that correspond to optimality
of simple laminates disappear.

second layer corresponds to a point on a side of it, and
the �eld in the outer layer corresponds to the point inside
the triangle. The corresponding �eld in the nucleus be-
longs to the corner of the permitted region (intersection
of the three ellipsoids): It satis�es the condition

j�xj = j�yj = j�zj = Constant:

The corresponding region is shown on Figure 1, Figure 3,
and Figure 5.

Fields in optimal second-rank laminates When one
of the eigenvalues of the stress tensor is signi�cantly
larger than the others, see (46)�(48), the optimal struc-
ture degenerates into a second-rank laminate. These re-
gions are shown in white in Figure 2, and Figure 4.
The generator of optimal cylindrical inclusions is codi-
rected with maximal eigenstress. Other eigenvectors cor-
responding to two smaller eigenvalues that determine the
normals to the layers in the second-rank laminate. The
maximal possible sti�ness of this anisotropic structure is
codirected with the generator; the optimal structure ad-
justs itself to equalize the response to stresses of di�erent
magnitudes applied in the directions across the genera-
tor. The stresses in the wrapping layer correspond to two
points along the generator, one of them on the boundary
of this domain. they satisfy the relation

j�xj+ j�yj = constant(x) < j�zj

where subindex z shows the direction of the generator of
cylinders. The corresponding stress in the weak material
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Fig. 9 Permitted regions in badly-ordered case.

inside the cylinder belongs to the rib of its domain F; It
satis�es the condition

j�xj = j�yj < j�z j:

Fields in optimal simple laminates The �elds in op-
timal laminate belong to the points of elliptical surface.
The �elds in both materials are constant, and they cor-
respond to regular points on the elliptical components of
the boundaries of the permitted sets.

Badly-ordered case When available materials are badly-
ordered, the admissible set of stresses is restricted by
elliptic hyperboloids, see Figure 9. The hyperbolic seg-
ments of the boundaries replace spherical and cylindrical
segments of the boundaries for well-ordered case. In this
case, the preferable material is de�ned not by the inten-
sity of the loading, but by its type: an intensive shear
loading requires the material with larger shear modulus,
and an intensive bulk loading requires the other material
with larger bulk modulus.

4.3

Topology Optimization

The asymptotic case when one of the materials is void is
of special interest. The optimal design problem becomes
a problem of determining of the shape of the material
frame in the design domain, or determining the number
and location of holes (voids) in a solid structure. This
problem is often called topology optimization problem.
Our results can be easily reformulated for this case. Here

we show the results for the zero Poisson ratio material
to keep the notations simple.

De�ne the norm k�kT of the stress �eld as following:

k�kT =

� j�xj+ j�yj+ j�zj if j�xj+ j�yj � j�zj;
(j�xj+ j�yj)2 + j�zj2 if j�xj+ j�yj > j�zj:

(54)

In an optimally designed body, the following conditions
are hold inside of the material:

k�kT =

8<
:
> C if the material is solid,
= C if the material is involved in

an optimal structure.1
(55)

where C is a positive constraint that depends on the
amount of given material and of the intensity of external
loading, (see Figure 8).

The formulated result realizes the centuries-old rule
of rational design: the material should never be under-
stressed. The material, however, may be overstressed since
we cannot do better that place the solid material in the
intensively stressed domain.

The optimal structures that realize this requirement
are again non-unique, see for discussion in Cherkaev (2000).
In particular, the laminate can be used as optimal struc-
tures. The �rst-rank (simple) laminate is never optimal
since the structure would break apart in this asymptot-
ical case. The properly adjusted second-rank laminates
correspond to cylindrical parts of the surface in Figure 8.
The third-rank laminate correspond to plane triangular
regions. The volume fraction, orientation, and the geo-
metric parameters of structures vary to make the �elds
in the material satisfy the conditions (55).

A

Terms Used in Section 3:4:1

In this appendix, we give explicit formulas for the terms
and an algorithm used in Section 3.4.1. The terms used
in (43) and (44) is given as

B = 12(�v42 + 4v33v2 � v43 � 6v23v
2
2 + 4v3v

3
2)�

3
h

�36 (4v3v
3
2 + 4v33v2 � v42 � 6v23v

2
2 � v43)�h�

2
h (56)

�108 �6v23v22 � (v33v2 + v3v
3
2)� 2(v42 + v43)

�
�2h�h:

N
�1 = 2(3�h�h + �n�h + 3�n�h)�x �

(�z + �y)(6�h�h � 2�n�h + 3�n�h) (57)

N
�1 = 2(3�h�h + 3�n�h + �n�h)�y �

(�x + �z)(6�h�h � 2�n�h + 3�n�h) (58)
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D1 = �h(��h + �n)(�y + �x + �z) (59)

N
�2 = ((�10�n + 18�h)�

2
h � 2(�n�h + 3(�n � �h)�n)�h

� 6�n�h(�2�h + 3�n))�x � ((10�n � 6�h)�
2
h

+ (6�n�n � 10�n�h + 21�n�h � 18�2h)�h

� 3�n�h(�2�h + 3�n))(�y + �z); (60)

N
�2 = ((12�n � 18�h)�

2
h � (2�n�h � 15�n�h + 9�n�n

+ 6�2h)�h + 2�n�h(�h + 3�n))�x + 2(�h + 3�h)

(3�h + �h + 3�n)(�n � �h)�y + (18�3h

+ 6(�n � 3�n + 2�h)�
2
h � (9�n�n + 9�n�h

+ 10�n�h � 2�2h)�h + 2�n�h(�h + 3�n))�z ; (61)

D2 = (��n + �h)(��h + �n)((6�h � �h)�x

�(�y + �z)(3�h + �h)): (62)

N
�3 = �2(��n + �h)(3�h + �h)(3�h + 3�n + �h)�x +

(18�3h � (18�n � 6�n � 12�h)�
2
h + (2�2h � 9�n�h

� 10�h�n � 9�n�n)�h2(3�n + �h)�n�h)�y +

((12�n � 18�h)�
2
h + (�9�n�n + 15�n�h

� 2�h�n � 6�2h)�h + 2(3�n + �h)�n�h)�z ; (63)

N
�3 = ((2�h + 2�n)�

2
h + (�9�n�h + 6�n�n � 10�n�h

+ 12�2h)�h + 3�h(�3�n�n + 2�n�h � 6�n�h

+ 6�2h))�x � 2(�h � �n)(3�h + �h)(3�h + �h

+ 3�n)�y + ((12�n � 18�h)�
2
h + (15�n�h � 6�2h

� 9�n�n � 2�h�n)�h + 2(�h + 3�n)�n�h)�z ; (64)

D3 = (�h � �n)(�h � �n)((3�h + �h)(�x + �y)

�(6�h � �h)�z) (65)

N
�4 = �2(�h � �n)(3�h + �h)(3�h + 3�n + �h)�x

+ ((2�n � 6�h)�
2
h + (�2�h�n � 18�2h + 6�n�n

+ 15�n�h)�h + 3�h�n(�3�n + 4�h))�y +

((12�n � 18�h)�
2
h + (15�n�h � 6�2h � 9�n�n

� 2�h�n)�h + 2(�h + 3�n)�n�h)�z ; (66)

N
�4 = ((18�h � 10�n)�

2
h + (6�n�h � 2�n�h

� 6�n�n)�h � 6�n�h(3�n � 2�h))�y +

((18�h � 6�n)�
2
h + (�21�n�h + 10�n�h + 6�2h

+ 9�n�n)�h � 2�n�h(5�h + 3�n))(�x + �z); (67)

D4 = (�h � �n)(�h � �n)((3�h + �h)(�x + �z)

�(6�h � �h)�y): (68)

B

Formulas for Energies

The energy E1Ri for the �rst-rank laminate where �i = 1
is de�ned as follows

E
1R
1 =

A�2x +B(�2y + �2z)� C(�y + �z)�x +D�y�z

18�2h(4�n + 3�n)�2h

E
1R
2 =

B(�2x + �2z) +A�2y � C(�x + �z)�y +D�x�z

18�2h(4�n + 3�n)�2h

E
1R
3 =

B(�2x + �2y) +A�2z � C(�x + �y)�z +D�x�y

18�2h(4�n + 3�n)�2h

where

A = (9(�h � �n)�n � 24�h�n + 27�2h)�
2
h �

�h(15�n�h � 4�h�n � 12�n�n)�h � 4�n�
2
h�n

B = (�9(�2n + �n�n � �n�h) + 12�h�n)�
2
h +

�h(4�h�n + 3�n�h � 6�n�n)�h � 4�n�
2
h�n

C = (3�h + 4�h)(3�h�n�h � 2�h�h�n � 3�h�n�n

+2�n�h�n)

D = (18�2n � 12�h�n + 9(�n � �h)�n)�
2
h +

2�h(3(�h � 2�n)�n + 4�h�n)�h � 8�n�
2
h�n

The energy E3Ri for the third-rank laminate where all �i's
in (15) are in the interval of (0; 1) is de�ned as follows
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E
3R
1 =

(3�h + 4�h)(�y + �x + �z)
2(�h � �n)

18�2h(3�n + 4�h)
;

E
3R
2 =

AA

DD

((3�h + �h)(�z + �y) + (�h � 6�h)�x)
2

18�2h�
2
h

;

E
3R
3 =

AA

DD

((�6�h + �h)�z + (3�h + �h)(�x + �y))
2

18�2h�
2
h

;

E
3R
4 =

AA

DD

((3�h + �h)(�x + �z) + (�h � 6�h)�y)
2

18�2h�
2
h

;

where

DD = (�36�2h + (36�n � 24�h � 24�n)�h

+27�n�n + 21�n�h � 4�2h + 4�n�h;

AA = (3�h + 4�h)(�n � �h)(�n � �h):

C

Algorithm to Find Sets of Fields

In this section, we give an algorithm to obtain sets F1

given in (49) and F2 given in (50) for each material.
Briey, the optimal energy is calculated through the fol-
lowing algorithm for any given material properties, not
necessarily restricted to well-ordered case.

E = proc(�i;Sj ;Si)

If �1; �2 and �3 2 (0; 1) E
3R
1

Elseif �1 = 0 then �2 = �2R11 and �3 = �2R12

If �2 2 (0; 1) then E
2R1
1

Elseif �3 2 (0; 1) then E
2R1
2

Elseif �2 = 0 and �3 = 1 then E
1R
3

Elseif �2 = 1 and �3 = 0 then E
1R
2

end

Elseif �1 = 1; �2 = 0 and �3 = 0 then E
1R
1

Elseif �2 = 0 then �1 = �2R21 and �3 = �2R22

If �1 2 (0; 1) then E
2R2
1

Elseif �3 2 (0; 1) then E
2R2
2

Elseif �1 = 0 and �3 = 1 then E
1R
3

Elseif �1 = 1 and �3 = 0 then E
1R
1

end

Elseif �2 = 1; �1 = 0 and �3 = 0 then E
1R
2

Elseif �3 = 0 then �1 = �2R31 and �2 = �2R32

If �1 2 (0; 1) then E
2R3
1

Elseif �2 2 (0; 1) then E
2R3
2

Elseif �1 = 0 and �2 = 1 then E
1R
2

Elseif �1 = 1 and �2 = 0 then E
1R
1

end

Elseif �3 = 1; �1 = 0 and �2 = 0 then E
1R
3 ;

end

The energies used in this algorithm and their notational
explanations are given in (69) � (69).
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