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Detecting stress �elds in an optimal structure I Two-dimensional
case and analyzer

A. Cherkaev and _I. K�u�c�uk

Abstract In this paper, we investigate the stress �eld in
optimal elastic structures by the necessary conditions of
optimality, studying two-phase elastic composites in two
dimensions. Necessary conditions show that an optimal
design is characterized by three zones: Zone 1 of pure
weak Material 1; Zone 2 of pure strong Material 2; Zone
3 where Material 1 and Material 2 are mixed to form
an optimal microstructure. To characterize these zones
we introduce two rotationally invariant norms N1 and
N2 of a stress tensor. The derived optimality conditions
state that inequality N1(�) < constant1 holds in Zone

1; inequality N2(�) > constant2 holds in Zone 2; and
two equalities hold simultaneously in Zone 3: N1(�) =
constant1; in the Material 1; N2(�) = constant2 in
the Material 2. Using this result, we analyze subopti-
mal projects and �nd how close �elds there are to the
regions of optimality.

1

Introduction

Structural optimization asks for the \best" layout of two
elastic materials in a design domain. Problems of this
kind are examples of nonconvex multivariable variational

problems; they require minimization of an integral if a
non-convex Lagrangian that depends on �elds, such as
the stress �elds in elasticity. More speci�cally, the La-
grangian of the considered problem is a two-well func-
tion: A minimum of two convex functions (wells) that
correspond to the energies of each phase.

The nonconvexity of the Lagrangian yields to non-
existence of a classical (variational) solution, to the ne-
cessity to build special highly oscillating minimizing se-
quences and develop special methods for relaxation of
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the Lagrangian. The most popular method to handle the
unstable problem is similar to the Ritz method: A class
of special oscillating minimizing sequences called lami-
nated of a rank, that is laminates made of laminates, is
considered. The averaged properties of these structures
can be analytically calculated. They depend on several
geometric parameters which are adjusted to improve the
solution. Another method (translation method) is based
on su�cient conditions of optimality: a lower bound of
the nonconvex Lagrangian is build that leads to a smooth
solution of the relaxed variational problem. This new so-
lution is in fact the average stress �eld in an optimal
structure. To build the bound, the di�erential proper-
ties of the solution (like the divergence-free character of
stresses) are replaced by a weaker requirements.

Both methods were applied to several problems of
structural optimization, including to the problem under
study. They provide the complete picture of the solution
when the minimum achieved on minimizing sequences
matches the lower bound. However, both methods have
serious limitations: The \laminates" method critically
depends on the correctness of a priori guess about the
class of proper structures, and the translation method
can lead to violation of the di�erential properties of so-
lution and to a slack bound. Therefore, a more univer-
sal method is needed to investigate the structural opti-
mization problems that is free of strong a priori guesses.
Looking for such method, we turn to a classical varia-
tional technique of strong local variations, developed in
Lurie (1975) and applied to the structural optimization
in early papers: Lurie (1975) and Lurie and Cherkaev
(1978) . Last years, this technique was further developed
in the book Cherkaev (2000) where conducting designs
were considered. The technique we used in this paper can
be generalized to sum of the energies for multiple loading
case Cherkaev et al. (1998b).

In this paper, we develop the method of necessary
conditions and apply it to elastic structures. The stress
�eld in optimal elastic structures is investigated by means
of special conditions of optimality. We consider the well
investigated problem of the optimal layout of two-phase
elastic composites in two dimensions. This allows us to
compare the suggested method with the known ones.
The discussed problem has already been studied from
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various perspectives (see recent review, Eschenauer and
Olho� (2001)): The lower bound of the energy among
all structures was calculated by means of the translation

method, see Gibiansky and Cherkaev (1997); Allaire and
Kohn (1994); Grabovsky (1996a). It was shown that the
optimal structures are either second-rank laminates Gib-
iansky and Cherkaev (1997); Milton (1981) or, in some
special cases, Vigdergauz structures Vigdergauz (1989);
Grabovsky and Kohn (1995) or Hashin's coated spheres

Hashin and Shtrikman (1962).
It is possible that other microstructures exist that

are optimal as well, which brings up the question: What
do these structures have in common? Our analysis of
optimal �elds answers this question. The necessary con-
ditions approach supplement the mentioned results by
analysis of the �elds in an optimal structure without
a priori speci�cation of admissible geometric con�gura-
tions. We are not checking the properties of guessed ge-
ometries, but describing the �elds in all optimal struc-
tures.

In this paper, we derive the optimality conditions and
characterize the stress �elds in both materials mixed in
the optimal design. We also analyze suboptimal projects
to judge how close they are to the optimum. Finally,
we compare the necessary conditions of optimality with
su�cient conditions. The discussed technique can also be
applied to more general problems: The minimization the
energy of multi-material mixtures (see Cherkaev (2000))
or the minimization of other functionals.

2

Formulation of the problem

Consider a domain 
 that is divided into two subdo-
mains 
i; i = 1; 2. The subdomains 
i are occupied by
isotropic materials with bulk and shear moduli of �i and
�i, respectively. Suppose that the volumes of 
1 and 
2

are �xed and a load is applied from the boundary.
A linearly elastic structure at equilibrium and in the

absence of body forces satis�es the following elasticity
equations (see, for example, Timoshenko (1970), Fung
(1965), and Atkin and Fox (1980))

r � �(x) = 0; � =
1

2
(ru+ (ru)T );

�(x) = S(x)�(x); (1)

where u is a de
ection vector, �(x), and �(x) are stress
and strain �elds respectively and S(x) is the compliance
tensor that characterizes the material properties.

The density of the energy is given by

G(�;�) =
1

2
�(x) : S(x) : �(x); (2)

where the second-rank stress tensors �(x) belong to the
set Fs(x) of statically admissible stress �elds (see (1).)

Fs(x) = f�(x) j r��(x) = 0 in 
;�(x)n(x) = t(x) on �T g:
(3)

Here, t(x) is surface traction, n(x) is the normal to the
surface, and �T is the boundary component where the
traction is applied.

In (2), S(x) is a fourth-rank material compliance ten-
sor of the heterogeneous material. The set of compliance
tensors, Sad, consists of the tensors:

S(x) = �(x)S1(�1; �1) + (1��(x))S2(�2; �2); (4)

where �i and �i are shear and bulk moduli of each ma-
terial, and �(x) is the characteristic function:

�(x) =

�
0 if x 2 
1;
1 if x 2 
2:

(5)

Using the principle of minimum total stress energy,
we can reformulate the elasticity equation as the mini-
mizer for the total energy E(�)

E(�) = min
�(x)2Fs(x)

Z



G(�;�)d
: (6)

where the stress �eld �(x) minimizes the total stress en-
ergy (or maximizes the total sti�ness).

Consider now an optimization problem

J = min
�(x)

W(�); W(�) = [E(�)+
1�+
2(1��)]; (7)

where 
1 and 
2 are the cost of Material 1 and Material

2, respectively. The optimization problem (7) leaves the
possibility of �ne-scale oscillations of the control �(x)
(see, for example, Cherkaev (2000)). Physically speak-
ing, these oscillations require that the optimally designed
structure is a composite. The composites properties rep-
resent limits of rapidly oscillating sequences of the orig-
inal layout. To deal with the fast oscillating solutions to
optimization problems, relaxation techniques are devel-
oped, see Cherkaev (2000). Relaxation essentially aver-
ages the solution of an optimization problem by replacing
the heterogeneous medium with the composite with the
optimal e�ective properties.

Matrix Representation for a Fourth Rank Plane

Tensor Dealing with tensor calculations, it is conve-
nient to transform tensors into matrices and vectors in a
tensor space. Let us consider the following base:

b(1) = 1p
2

�
1 0
0 �1

�
; b(2) = 1p

2

�
0 1
1 0

�
;

b(3) = 1p
2

�
1 0
0 1

�
: (8)
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where b(i) = fb(i)��g. In this base, any symmetric forth-
rank tensor can be rewritten as a three by three matrix
while any symmetric second-rank tensor can be repre-
sented by a three-dimensional vector.

A second-rank stress tensor has the following repre-
sentation,

��� = ���b
(i)
��b

(i)
�� = s1b

(1)
�� + s2b

(2)
�� + s3b

(3)
�� (9)

where (s1 s2 s3)
T = s is a vector with the components,

s1 =
�11 � �22p

2
; s2 =

2p
2
�12 and s3 =

�11 + �22p
2

;

(10)

and an anisotropic fourth-rank compliance tensor S is re-
placed by a symmetric three by three matrix D = (Dij):
Components ofD are determined by the following trans-
formation,

Dij = b
(i)
��S����b

(j)
�� ; i; j = 1; 2: (11)

The components of D can be written as follows

D11 =
1

2
(S1111 + S2222)� S1122;

D12 = S1112 � S2221; D13 =
1

2
(S1111 + S2222); (12)

D22 =
1

2
(S1111 + S2222) + S1122;

D12 = S1112 + S2221; D33 = 2S1212:

Particularly, a fourth-rank isotropic compliance ten-
sor S is given by a diagonal matrix,

Di = diag

�
1

2�i
;
1

2�i
;
1

2�i

�
: (13)

Remark 1 Although we used a new notation D for a
transformed compliance tensor, the tensor notation S
will also be used for transformed compliance tensors here-
after.

3

Variations

3.1

The Scheme of the Weierstrass Test

We investigate the optimality of a design by means of
necessary conditions of optimality, namely, theWeierstrass-

type test. The Weierstrass-type structural variation is de-
scribed next.

An array of in�nitesimal inclusions of an admissible
material Sn is implanted at a point x in the domain

Fig. 1 A cartoon for inclusions in a base material. The vol-
ume fractions of inclusions is in�nitely small.


 occupied by a host material Sh (see Figure 1). We
compare the cost of the problem with and without the
implant, and compute the increment of the cost: The
di�erence between the functional corresponding to the
design with and without implant. If the examined struc-
ture is optimal, the increment is nonnegative. Otherwise,
the cost is reduced by the variation, and the design fails
the Weierstrass-type test.

The increment of energy depends on the shape of the
region of variation and must stay positive no matter what
this shape is. Accordingly, the shape must be adjusted
to the �eld to minimize the increment that must remain
nonnegative, see Lurie (1975).

3.2

Variation of Properties

The usual way to perform the Weierstrass-type varia-
tion is to consider an elliptical inclusion and to adjust
it, see Lurie (1975). However, we use a slightly di�erent
procedure here. Namely, we consider the structural vari-
ation that is a dilute array (second-rank laminates) of
elongated inclusions following Cherkaev (2000). In this
structure, the inclusions are made of the (nuclei) mate-
rial Sn, and the envelope is made of the host material
Sh. This array is implanted into the pure host medium
Sh.

First, we describe properties of a second-rank lami-
nate. This composite structure can be characterized by
its e�ective tensor S�; the e�ective tensor that links the
averaged stress and strain �elds in the \representative
region." This region is much larger than an individual
inclusion, but much smaller than the region of variation.
The e�ective tensor S�(mn) of the structure depends on
geometrical parameters of the inclusion array; its deriva-
tion uses the continuity conditions on the boundaries of
the inclusions, see Cherkaev (2000). In our notations, it
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has the form:

S�(mn) = Sh +mn

�
(Sn � Sh)�1 + (1�mn)�(�)

��1
;

(14)

where mn is the volume fraction of the nuclei and matrix
� depends on the structure of the array. In the base (8),
where the coordinate axes coincide with the directions of
lamination, matrix �(�) is

�(�) =
�h�h

�h + �h

0
B@

1 0 2�� 1

0 0 0

2�� 1 0 1

1
CA ; 0 � � � 1:

(15)

Here, the inner parameter � is the relative elongation of
inclusions in the array; this parameter is responsible for
anisotropy of e�ective tensor S�:

Remark 2 For the considered problem, the e�ective ten-
sor S�(mn) was calculated in the papers Gibiansky and
Cherkaev (1997); Francfort and Murat (1986); Milton
(1986); Bends�e et al. (1993). In order to compute it, a
two-step procedure is used: First, the e�ective property
of a laminate made from initial materials is computed;
then the e�ective property of a laminate made from the
host material and the obtained laminate is computed by
the same procedure. After proper simpli�cations, one ar-
rives at the formula (14).

Suppose now that the volume fraction mn is in�nitesi-
mal, mn = �m� 1. The e�ective property S�(m+ �m)
can be calculated via Taylor's expansion:

S�(m+ �m) = S�(m) + �m
d

dm
S�(m) + o(�m) (16)

Substituting the value of S�(m) from (14) into (16), we
obtain

S�(�m) �= Sh + �S;

where

�S = V�m+o(�m); V =
�
(Sn � Sh)�1 +�

��1
; (17)

and � is de�ned in (15).

Next, compute variation of energy caused by the vari-
ation (17) of properties �S. Since we have replaced the
array of inclusions by its e�ective tensor S�(m) that con-
tinuously depends on �m, we can compute the variation
of the cost using the classical variational of stationary
conditions: There is no need to consider the continu-
ity conditions on the boundary of the inclusions because
they are already taken into account when the tensor of

e�ective properties �S is introduced. Instead, we con-
sider the standard variation of the in�nitesimal volume
fraction �m(x):

�m(x) =

�O(�); if kx� x0k < �;
0; if kx� x0k � �:

�m 2 C1(
) (18)

and the corresponding stationary optimality conditions.

Remark 3 Tensor �S depends on two parameters of vari-
ation: The angle between the layers and the relative elon-
gation �. In the next calculations, we assume that the
axes of the tensor �S in base (8) (see (13)) are codi-
rected with the principal axes of matrix �. Later, in Sec-
tion 6 it will be clear that the obtained necessary condi-
tions are the strongest ones, thus justifying this assump-
tion. Namely, we will observe that �nal results coincide
with the extension obtained from su�cient conditions
(bounds).

3.3

Increment

The cost consists of the increment of energy due to the
variation of �S and the direct cost of the variation (i.e.,
the change in the total cost due to change of quantities
of the materials used). When replacing the host material
Sh (with the speci�c cost 
h) is replaced with the ma-
terial of Sn (with the speci�c cost 
n), the direct cost is
proportional to the di�erence of the costs of these mate-
rials:

(
n � 
h) �m: (19)

The increment of the energy �E can be computed as:

�E(�) = s
TV(�)s�m +G0(�m): (20)

where V is given in (17).

Remark 4 Notice that we consider a weak (stationary)
variation of the e�ective properties �S in contrast with
the strong variations of the point-wise properties on the
boundary of the inclusions in the array. The weak vari-
ation of the properties is easy to compute: the stress
�elds remain constant since the main term of the vari-
ation of order of �m is independent of their variations.
This remark justi�es the use of e�ective tensors in the
variations.

Increment �E depends on parameter �. We obtain the
following expression for �E(�) using (17):

�E(�) =

�
V11s

2
1 +V22s

2
2 +V33s

2
3

+ 2V12s1s2 + 2V13s1s3 + 2V23s2s3

�
�m; (21)
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and the components of V depend on � as follows

V11 =
(�h � �n)(�n(2�h + �h) + �h�h)(�h + �h)

2�hK(�)

V13 =
(2�� 1)(�h � �n)(�n � �h)(�h + �h)

2K(�)

V22 =
1

2

�h � �n
�h�n

V33 =
(�h � �n)(�n(2�h + �h) + �h�h)(�h + �h)

2�hK(�)
;

V12 = 0; V23 = 0

where

K(�) = C1�(� � 1) + �n�n�h(�h + 2�h) +

�h�h(�h + �h)(�n + �n) + �n�n�
2
h;

in which the constant C1 is equal to

C1 = 2�h�h(�h � �n)(�n � �h):

We remind, that the coordinate axes are directed along
the principal stresses. Thus, s = (�x 0 �y)

T is used in
the calculations of (21). Finally, the cost of the variation,
�J �m, is expressed as an explicit function of �:

�J �m = (
n � 
h + �E(�)) �m: (22)

Since all variations (including the most sensitive one)
lead to the nonnegative increment �J , the optimality
condition of the ith material becomes:

�J (Si;Sj ;�j) = 
n � 
h +min
�

�E(�) � 0; (23)

where �J (Si;Sj ;�i) is a variation caused by adding ma-
terial Sj into the material Si; and �i is the �eld in the
host material Si.

3.3.1

The Most Sensitive Variations

The calculation of the optimal variation is slightly dif-
ferent in the case of well- and badly ordered materials.
Let us number the materials so that �1 < �2. The well-
ordered case corresponds to the moduli � of materials
so that �1 < �2; otherwise, it is called badly ordered
case. We demonstrate calculations of the well-ordered
case hereafter unless otherwise stated.

According to (23), the optimal increment in energy
is

f0 = min
�

�E(�): (24)

Here the inner parameter � is used to adjust the struc-
ture to the acting stress �eld. To compute an optimal
variation, we take the derivative of �E(�) with respect to
� in (24), and obtain the following values of �'s as zeros

of
@�E(�)

@�
:

�1 = ��x(�h + �n)�h + �y(�h + �h)�n
�h(�x � �y)(�n � �h)

; (25)

�2 =
�x(�h + �n)�h � �y(�h + �h)�n

�h(�x + �y)(�h � �n)
: (26)

The optimal values of � must belong to the interval of
[0; 1]. If none of the (25) and (26) belongs to (0; 1), the
optimal values are at the end points, i.e., � = 0 or � = 1:
There are two cases to consider depending on the sign
of �h � �n. Increment f0 is de�ned as fa0 and fb0 for the
corresponding cases:

Case A: If �h � �n > 0, then f0 is

fa0 =

8>>>>>>><
>>>>>>>:

E(0) if
�y
�x

> K;

E(�2) if
1

K
� �y

�x
� K;

E(1) if
�y
�x

<
1

K
;

(27)

when �h � �n > 0. Here

K =
(�n + �h)�h
(�h + �h)�n

> 1: (28)

Case B: If �h � �n < 0, then optimal value �0 always
belongs to the boundary of the interval [0; 1]. The
minimal �E is reached at the end points, i.e., �0 is
either 0 or 1.

fb0 =

8<
:
E(1) if �x � �y ;

E(0) if �x � �y ;
(29)

when �h � �n < 0 for which K < 1.

Note that these cases correspond to physically di�er-
ent situations under the given conditions: Case A cor-
responds to inclusions of a strong material added to a
weak material and Case B corresponds to the inverse sit-
uation. The next section will illustrate this point using
a speci�c example.
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3.4

Necessary Conditions

Let us determine the regions of permitted �elds for an
optimal design using the Weierstrass variations or the
conditions (27) - (29).

1. Suppose that an inclusion of second materialS2 (strong
material) is placed into domain 
1 (weak material).
The corresponding increment �J (S1;S2;�1) is de-
�ned by (23):

�J (S1;S2;�1) = 
2 � 
1 + fb0(S1;S2;�1) � 0; (30)

where �1 is the �eld at a point of domain 
1 of the
�rst material. Since S1 and S2 are given, the inequal-
ity in (30) depends only on the stress �eld �1. The
set of stresses �1 that satis�es the condition (30) is
called F1: If �1 2 F1, material S1 is optimal. 1

2. When the inclusion of �rst material 
1 (weak mate-
rial) is placed into domain 
2 (strong material), the
increment is de�ned by (23)

�J (S2;S1;�2) = 
1 � 
2 + fa0(S2;S1;�2) � 0; (31)

where �2 is the �eld at a point of domain 
2. The
set of stresses �2 that satis�es the condition (31) is
called F2: If �2 2 F2, then the material S2 is optimal
(see footnote (1)).

Remark 5 When the increment due to the inclusion of
the strong material into the weak material is calculated,
the formula in (17) is modi�ed as:

�S = �V�m+ o(�m); V =
�
(S2 � S1)

�1 +�
��1

while subscript h in (15) becomes: h = 1.

The union F = F1 [ F2 of two sets of optimality of
the �rst and second materials does not coincide with the
whole range of �. The remaining part, Ff , is called the
forbidden region. Here, none of the materials is optimal.
Fields in an optimal design should never belong to this
region to matter what the external loading is.

If the external loading belongs to Ff , the pointwise
�elds are still in their regions F1 and F2, but the mean
�eld matches the external load. This phenomenon is the
reason of formation a structure or a composite material
in the optimal designs.

Remark 6 According to the theory of quasiconvexity, the
solution (stress �eld) of the variational problem (6) is
oscillatory if the Lagrangian (2) is not quasiconvex, see
for example Cherkaev (2000). The forbidden region Ff

necessarily belongs to the region where the Lagrangian
is not quasiconvex.

1 Optimality is understood in the sense of satisfaction of
necessary conditions.

Remark 7 Dealing with special necessary conditions, one
cannot guarantee that there are no other tests that are
more restrictive. If this were the case, the forbidden re-
gion would be larger than Ff . For the considered prob-
lem, however, the results are �nal as it follows from the
results of Section 6.

Details of the calculations are shown explicitly next
when �x�y > 0. Assume that the axes are oriented so
that �xy = 0. In this case, �x and �y become the eigen-
values of �. The set F1 of stresses optimal in the material
S1 and set F2 of stresses optimal in S2 are determined
by (30) and (31), respectively:

F1 = f�1 j �J (S1;S2;�1) = 
1 � 
2 + E(1) � 0g : (32)

F2 = f�2 j �J (S2;S1;�2) = 
2 � 
1+ (33)

8><
>:

E(0) if
�y
�x

< K;

E(�2) if
�y
�x

� K;

9>=
>; � 0

9>=
>;

where

E(�2) = �1

4

(�1 � �2)(�2 + �2)

�2(2�1�2 + �1�2 + �2�2)
(�x + �y)

2: (34)

When �x�y < 0, parameter �1 lies in the interval of (0,1).
Therefore, E(�2) is replaced by E(�1) in (33) which yields
to the expression:

E(�1) = �1

4

(�1 � �2)(�2 + �2)

�2(2�1�2 + �2�1 + �2�2)
(�x � �y)

2: (35)

The obtained results can be interpreted for the con-
dition of �x�y > 0 as follows:

� Formula (32) corresponds to the variation when the
inclusion of the strong material is implanted into a
weak material. The most sensitive variation corre-
sponds to a �llet (laminates) that is placed along the
direction of maximal �eld. Thus, the nuclei \exposes
itself" to the maximal e�ect of the variation.

� Formula (33) corresponds to the variation when the
inclusion of the weak material is implanted into the
strong material. The most sensitive variation corre-
sponds either to the family of nuclei in the second
rank lamination (if the ratio of �x and �y is smaller
that a limit value) or a �llet (if the ratio of �x and
�y is larger than this value). Thus, the weak material
\hides itself" to maximize the e�ects of the variation.
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Fig. 2 The stress �elds when the materials have zero Poisson
ratio.

4

Results

4.1

Range of Admissible Fields

Based on the results of Section 3.3.1, we observe that
the boundaries of F1 and F2 consist of the two following
components: Two symmetric curves

E(�) =

�
A�2x +B�2y + 2C�x�y = 1

B�2x +A�2y + 2c�x�y = 1
(36)

where the constant coe�cients A, B and C are deter-
mined by the material constants; this component cor-
responds to optimal values � = 0 or � = 1 of E(�).
The other component is represented by two families of
straight lines

E(�i) =
D1(�x + �y)

2 = 1
D2(�x � �y)

2 = 1
(37)

where the constant coe�cients D1 and D2 are deter-
mined by the material constants; this component cor-
responds to stationary values of � in (25) and (26).

Well-ordered case: In this case, the curves in (36) are
ellipses since A > 0, B > 0, and AB > C2. The opti-
mality regions are presented in Figure 2 and Figure 3.
Region F1 of optimality of the weak and cheap mate-
rial lies inside of intersection of two smaller ellipses; this
region is shown in Figure 3 by the curve with crosses
on it. Region F2 of optimality of the strong and expen-
sive material lies outside of the linear envelope stretched
on two larger ellipses; this region is shown by the curve
with circles on it. The boundary contains elliptical and
straight components. Forbidden region Ff lies between
F1 and F2. In Figure 3(a), we �rst plot the curves deter-
mined by stationary values 0, 1, �1, and �2 of �, using

xσ
yσ

–8

–6

–4

–2

0

2

4

6

8

–8 –6 –4 –2 2 4 6 8

(a) Region F1 lies inside of the region given
by crosses, while region F2 lies outside of the
region given by circles. The forbidden region
Ff lies between the regions.
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(b) The asymptotic case when the ratio be-
tween the material properties is large.

Fig. 3 Optimal �elds for well-ordered case: �1 < �2 and
�1 < �2.
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(b) The asymptotic case when the ratio be-
tween the material properties is large.

Fig. 4 Optimal �elds for badly ordered case: �1 > �2 and
�1 < �2.

(25) (26). Next, we follow the conditions in Section 3.4
to select among these stationary values.

In Figure 3(b), the asymptotic case is shown. One
of the materials has in�nite compliance or becomes void
and the optimization problem becomes the problem of
topology optimization Bends�e (1995). The region of op-
timality F1 of the void \material" shrinks to zero as ex-
pected. Elliptic components of the boundary of F2 dis-
appear.

Finally, we observe that ellipses in Figure 3 are ro-
tated by angles depending on Poisson ratio (e.g., when
Poisson ratio is zero, C = 0 in (36), see Figure 2 where
the ellipses are mutually orthogonal).

Badly ordered case: In the badly ordered case, A and
B in (36) have di�erent signs, and the elliptical compo-
nents of the boundaries in well-ordered case become hy-
perbolic. The situation is more tedious than in the well-
ordered case. Each material plays both a role of strong
or weak one, depending on the type of �eld �: If the �eld
is close to hydrostatic, the ordering of the bulk moduli
de�nes what material is called strong or weak and if the
�eld is close to shear, the ordering of the shear moduli
de�nes the ordering of materials. The cheaper material
is always optimal in the proximity of the origin (that
corresponds to small magnitude of the stress).

The results are presented at Figure 4(a). The bound-
ary of the region of optimality for the more expensive
material corresponds to the intersection of two sharp hy-
perbolas in (36); this region is shown by a curve with
circles on it.

The boundary of the region of optimality for the
cheaper material corresponds to the convex envelope
stretched on two other hyperbolas; this region is shown
by a curve with crosses. The straight part of the envelope
corresponds to optimality of implant that is formed as a
second-rank dilute composite.

When the cost of both materials is the equal, the
regions degenerates. One can verify that all boundaries
become straight lines passing through the origin.

Optimal �elds and optimal structures We already
mentioned that the optimal design problem we are deal-
ing with was investigated in a number of papers. Partic-
ularly, it was found that the variety of optimal structures
consists of second-rank laminates. Also, the Vigdergauz
structures are equally optimal if �x�y > 0 and one of the
phases is void.

Our analysis allows us to explain the optimality of
these di�erent geometries. Suppose that a periodic op-
timal structure is submerged into a constant external
stress �eld �. If the external �eld belongs to the forbid-
den region Ff , the local �elds belong to the boundaries
of the permitted regions, F1 or F2, and the averaged
stress is equal to the applied one.
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Fig. 5 The stress �elds when the materials have zero Poisson
ratio: Case when det � � 0.

The second-rank laminates are optimal, if the exter-
nal �eld belongs to the triangle \Rank-two" in Figure 5,
that allows the representation

� = m1�1 +m2�21 +m3�2 (38)

where mi � 0; m1 + m2 + m3 = 1. Here, stress �1

corresponds to the �rst (weak) material located in the
inner layer of the second-rank structure, and it belongs
to the corner point of the boundary of its permitted re-
gion: �1 = ��2, see Figure 5. In (38), stress �21 cor-
responds to the second (strong) material located in the
other inner layer of the second-rank structure. The �elds
�1 and �21 are compatible det(�1��21) = 0. This �eld
corresponds to that point of the boundary of permit-
ted region F where the elliptical component meets the
straight component (see Figure 5). Finally, stress �2 cor-
responds to the second (strong) material located in the
outer layer of the second-rank structure. This �eld is not
compatible with neither �1 nor �21 but it is compati-
ble with their weighted sum: det(�s � �2) = 0 where
�s = m1=(m1 +m2)�1 +m2=(m1 +m2)�21. This �eld
corresponds to a point the straight component of the
boundary of region F (see Figure 5).

Simple laminates are optimal when the external �eld
is anisotropic, and belongs to curved trapezoids \Rank-
one" in Figure 5: It combines as a sum of two �elds; each
of them belong to the elliptical component of the bound-
ary of the correspondent permitted region and they are
compatible.

The �elds in Vigdergauz structures or in
Hashin-Shtrikman \coated spheres" are di�erent, how-
ever they also belong to the boundaries of the permit-
ted regions. The �eld in the nucleus again belongs to

the corner point of its permitted region, being isotropic:
�x = �y . The �elds in the envelope vary from point to
point, but they remain on the straight component of the
boundary of F2!

Here, we do not demonstrate the bulky calculations
that con�rm these results; the reader can check them
using the formulas in the previous section.

Remark 8 The optimality of the mentioned structures
was independently veri�ed by the su�cient conditions.
This optimality now proves that our variations are the
most sensitive ones. Indeed, if a more sensitive variation
existed, it would correspond to a larger forbidden region;
the �elds in mentioned structures would be in that larger
region and therefore would be nonoptimal which contra-
dicts su�cient conditions.

Structures with in�nitesimal elements The opti-
mality requirements force the �elds to obey an addi-
tional condition: they must belong to the boundaries
of the permitted regions if the external �eld is in the
forbidden region. This requirement cannot be enforced
in a \bulky" domain �lled with one material since we
can control only the curve that divide the domains of
di�erent material. Therefore, we conclude that the opti-
mal structure should, in general, not contain \bulky do-
mains" that a dividing curve should have in�nitely often
wiggles, Cherkaev (2000), unless the structure is strictly
periodic and the load is strictly constant. The optimal
structure becomes a composite in which �elds belong to
the boundaries (F1 = constant1) or (F2 = constant2)
at each point (see Table (1)).

4.2

Norms

For centuries, architects and engineers knew that stress
�elds should be distributed evenly over an optimal struc-
ture; thus the overstressed regions require more reinforce-
ments, while the understressed regions can be lightened.
This common sense requirement of optimality of equally
stressed designs can be stated mathematically in terms
of a norm of a stress �eld.

We consider the well-ordered case. Our results can
be rewritten in the following form: The boundaries of F
correspond to constancy of two norms:

Table 1 Table of the optimal design.

Average �eld �0 Optimal Material

�0 2 F1 Material 1
�0 2 F2 Material 2
�0 2 Ff Composite in which �1 2 @F1

and �2 2 @F2 everywhere
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N1(�1) =
p
E(1); and

N2(�2) =

8>>><
>>>:

p
E(0) if

�2y
�2x

< K;

p
E(�2) if

�2y
�2x

� K;

9>>>=
>>>;

(39)

where �1 =

�
�1x 0
0 �1y

�
is the stress �eld in 
1, and �2 =�

�2x 0
0 �2y

�
is the stress �eld in 
2; and K is given in (28).

In (39), E(0) and E(1) are given in (36), and E(�2) is
given in (37).

The reader can check that N1 and N2 are indeed
rotationally invariant norms of two-by-two symmetric
tensors: The axioms of norms are satis�ed. In the one-
dimensional case, both N1 and N2 degenerate to the
absolute value of the stress.

In the regions where composites are used these norms
are constant in each material in an optimal structure

N1 � constant1; or N2 � constant2: (40)

The mean �eld varies due to the variation of concen-
trations. The mixtures should be in�nitesimal �ne, oth-
erwise one cannot preserve the constancy of the norm
inside the solid region of a material.

Remark 9 Notice that the equation (40) is ful�lled every-
where in the design domain. These conditions are satis-
�ed as equalities in the whole region of composites. The
conditions are nonlocal: the variation of the loading in
a small subdomain leads to an evenly distributed vari-
ation of optimal �elds and corresponding optimal mi-
crostructures in all design domain. This feature, natural
for optimal design, is a mark of quasiconvex envelope,
see Cherkaev (2000) since the Euler-Lagrange equations
of the corresponding variational problem lose ellipticity
that is the reason for localization.

Topology optimization Finally, we observe that in
the asymptotic case when one of the materials is void
(the case of topology optimization, see Figure 3(b), the
small ellipses in the center become a point at the origin:
N1 = 0. The non-void material must be never under-
stressed in an optimal design: Its norm becomes N2 =
j�xj+ j�yj and the inequality holds

N2 �
s

8�2�2(
2 � 
1)

�2 + �2
; 8x 2 
2: (41)

P

P

Fig. 6 Plate design domain, load and boundary conditions.

5

Analyzer

The obtained necessary conditions can be used to quan-
titative examine suboptimal projects.

A design may have stresses whose norm is quite close
to a constant everywhere. This design would approxi-
mately solve the optimality conditions and therefore would
be suboptimal. The geometry of the design structure can
be arbitrary; only the �elds in it need to be checked. The
necessary conditions provide a tool that we call an an-

alyzer to examine the given structure and to judge how
close to an optimal one is it.

Using the analyzer, we can see how far from the con-
stancy is the corresponding norm of the stress �eld. The
use of it is similar to the use of color maps of a failure
criterion that show how close the stresses are to the limit.

5.1

An example

We illustrate the use of the analyzer by the following ex-
ample. Consider a plane domain, a 25cm�25cm plate
with Poisson ratio 0.32 and Young's modulus 1e; the
plate is loaded as shown in Figure 6. The caverns of un-
known shape will be introduced and the results will be
compared using the analyzer. We deal with an asymp-
totic case where one of the materials is void, or with the
problem of topology optimization. Another application
of this problem can be seen in K�u�c�uk (2001) where a
plate for a circle, square and two rectangles is examined
with di�erent material properties.

In this case, it is expected that N1 = 0;N2 = j�xj+
j�yj; the norm N2 must be constant everywhere in an
optimal projection if �x�y > 0, that trace of tensor �
is constant, and if �x�y < 0, then Von Mises stress is
constant (see Section 4.2). This corresponds to the ear-
lier results of Bends�e (1995); Grabovsky (1996b). We
consider examples of suboptimal design for planar struc-
tures, and compare the shapes of a circle, square and
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Fig. 7 Von Mises stress distribution for a deformed structure
when a circle is included.
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Fig. 8 Von Mises stress distribution for a deformed structure
when a combination of di�erent geometries is included.

four ellipses with the same areas, following the ideas of
Cherkaev et al. (1998a).

We �nd that the structure in Figure 9 better approxi-
mates the necessary conditions than the others. Compar-
ing this norm in Figure 8-Figure 9 for various structures,
we observe that the deviation from the constancy of the
norm N(�) is smaller in Figure 9 than the others. It is
not claimed to be the optimal but it represents a reason-
able suboptimal design. In the true optimal solution the
norm N(�) is expected to be constant everywhere.
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Fig. 9 Von Mises stress distribution for a suboptimal struc-
ture.

We obtain the following normalized energies W for
each structure in Figure 7-Figure 9; W = 0:3967 in Fig-
ure 7, W = 0:3508 in Figure 8, and W = 0:2523 in Fig-
ure 9. This calculation con�rms that that the structure
in Figure 9 is the best from the compared set.

Checking the norms given in (39) allows us to de-
scribe quantitatively suboptimal structures and to point
to the places where the norm derivated from the con-
stant. One can use this as a tool to decide if a structure
is close to optimal.

6

Supplement: Comparison with Su�cient Conditions

6.1

Translation method

The analysis of admissible regions is based on special nec-
essary conditions; in principle, these regions could be de-
creased by more sophisticated conditions. Here we show
that in fact the results cannot be improved, by compar-
ing necessary conditions and su�cient conditions.

The su�cient conditions obtained by the Transla-
tion method (see the discussion of the method and its
development in the books Cherkaev and Kohn (1997),
Cherkaev (2000), and Milton (2001)) are used here to
derive the information of the admissible regions. Con-
trary to necessary conditions, the su�cient conditions
correspond to admissible regions that could, in principle,
be abridged by more sensitive conditions. Both methods
provide the two-side bounds for admissible regions.

In setting of two-dimensional elasticity, the transla-
tion method exploits the nonuniqueness of the de�nition
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of the elastic moduli, see Cherkaev et al. (1992). This
nonuniqueness allows us to consider the \translated" ten-
sor of elastic moduli instead of the original tensor and
bound this new tensor by the harmonic mean bound.
Then the parameter of the translation is adjusted to
make the bound stronger. The elasticity tensors S are
translated by using a multiple of a special tensor T called
translator,

S
trans = S � tT ; (42)

where t is a constant. Formally, the translator is the
isotropic tensor of two-dimensional elasticity with op-
posite bulk and shear moduli: �T = 1 and �T = �1.

The mentioned nonuniqueness leads to the following
property: the stress �eld of any periodic structure loaded
by homogeneous external forces at in�nity stays the same
if the elasticity tensors Si are replaced by S

trans
i no mat-

ter what the magnitude t of the translator is, providing
that the translated tensors Strans

i are positive de�nite;

Si � tT � 0 8i: (43)

6.2

Basic formulas

In order to compare necessary conditions with the trans-
lation method, we need to compute the �elds in the struc-
tures predicted by this method. Earlier a similar problem
was considered in Grabovsky (1996a) and it is discussed
in Cherkaev (2000); Milton (2001).

Relaxation of the problem in (7) is based on the fol-
lowing essentially algebraic procedure: Consider the La-
grangian in (6) and neglect all di�erential constraints on
the stress �eld. Then the stress tensor become constant
in each material, since the energy of each well is con-
vex. The minimization problem (6) becomes an algebraic
problem

C(F) = min
�2Fs

0
(x)
[F(�) + 
1m1 + 
2m2]; (44)

where

F(�) =
1

2

X
i

mi�
T
i Si(x)�i (45)

and

Fs
0 (x) = f�ij G =

X
i

mi�i � �0 = 0g; (46)

�i is the �eld in the ith material subject only to integral
restrictions (46), and mi is the �xed fraction of the ith
material in the design domain. This lower bound of the
energy in (44) is the convex envelope of the Lagrangian
G.

Let us compute the �elds that solve the problem (44).
To minimize F under the constraint (46), we compute

@

@�i
(F+ �G) = mi(Si�i + �) = 0; (47)

where � is the Lagrange multiplier by (46). From (46)
and (47), we �nd:

� = �S�0; (48)

and

�i = S
�1
i S�0: (49)

where

S =

 X
i

miS
�1
i

!�1

:

Substituting (49) into (44), we obtain the lower bound
that is the convex envelope of the multi-well Lagrangian.

C(F) =
1

2
�T0 S �0 � F(�) 8�: (50)

The translation method improves the bound by using
the nonuniqueness of S ( generally, by using the quasi-
convex but not convex functions, see the discussion in
Cherkaev (2000)). The formal application of the transla-
tion bound is easy: we simply replace the elasticity ten-
sors in (50) and (49) by the translated tensors as in (42),
subject to the constraint (43). In order to make this
bound e�ective, we maximize the right-hand side with
respect to t; and obtain

F(�) � max
t:(43)holds

1

2
�T0 (Sh + T )�0; (51)

where

Sh = S � T ;

=

 X
i

mi(Si � T )�1

!�1

: (52)

Since all involved elasticity tensors correspond to the
isotropic elasticity, we replace the elastic moduli:

� is replaced by �� t;
� is replaced by �+ t

and (43) leads to

T = ft j �minf�1; �2g � t � minf�1; �2g: (53)
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6.3

Comparing the �elds

The obtained formulas assume that the volume fractions
in the mixture are �xed. In contrary, the necessary con-
ditions do not deal with volume fractions, only with the
cost of materials. To compare the �elds in structures, we
need to exclude volume fraction m from the formulas for
translation bounds by computing the minimum over it.
The dependence of the translation parameter t must be
excluded as well. This leads to the following problem

L(F) = min
m

�
max
t2T

1

2
�T0 (Sh + T )�0 +m1
1 +m2
2

�
;

(54)

where Sh is given in (52). After the optimal parameters
m and t are computed as function of the load �0, these
values are used to compute the �elds using the transla-
tion analog of (49).

The solution of the inner maximization problem in
(54) is found from:

@L(F)

@t
= 0; and

@2L(F)

@t2
� 0 for all t 2 T : (55)

First, assume that optimal values of t belong to the set
(53). The conditions in (55) are observed by the following
t's as a function of the �eld

t1 = ��xb� �ya

�xd+ �yc
; (56)

t2 = ��yb+ �xa

�xc+ �yd
; (57)

where

a = �1�1�2 � �1�2�2 � �1�2�2 + �1�1�2;

b = �1�2�2 � �1�2�2 + �1�1�2 � �1�1�2;

c = �1�2 � �1�2; (58)

d = 2(��1�2 + �1�1 � �1�2 + �2�2)m (59)

�2�1�1 + �1�2 + �1�2:

The correct sense of these extremum points is monitored
by the second derivatives

@2L(F)

@t2

�����
�����
�����t=t1 = � mA4(1�m)

(�2y � �2x)(�2 � �1)(�2 � �1)
;

(60)

@2L(F)

@t2

�����
�����
�����t=t2 =

mA4(1�m)

(�2y � �2x)(�2 � �1)(�2 � �1)
;

where A is a function of the material properties. Notice
that in (60) the signs of the second derivatives depend
on �eld �0 and the material properties.

In the well-ordered case when it is assumed that �1 <
�2 and �1 < �2; we have

topt =

8<
:
t1 if �x < �y;

t2 if �x > �y:
(61)

(for the badly-ordered case, the roots t1 and t2 switch
places).

To calculate the optimal values of m, we impose con-
ditions similar to the ones given in (55). Hence, we have

mt1 =
2�1�1(�2 + �2)k�

p
l

2ak
(62)

where

k = 2a(
1 � 
2)� (�1 � �2)�
2
x and

l = (�2 + �2)(�1 + �1)(a�y � b�x)
2
k;

and the optimal volume fraction corresponding to t2 is

mt2 =
2�1�1(�2 + �2)~k�

p
~l

2a~k
(63)

where

~k = 2a(
1 � 
2)� (�1 � �2)�
2
y and

~l = (�2 + �2)(�1 + �1)(a�x � b�y)
2~k:

6.4

Asymptotic: Topology optimization

First, we examine the case of topology optimization: �1 =
�1 = 0. The case can be examined analytically. In this
case, the optimal values of t take only limiting values,
see Cherkaev (2000): t = ��2 and t = �2.

Case: t = ��2 The optimal values m�2 of m are

m�2 =
j�x + �yj

4

s
2(�2 + �2)

�2�2(
2 � 
1)
(64)

The condition m�2 2 [0; 1] yields to the inequality for
the stresses:

0 � j�x + �yj �
s

8�2�2(
2 � 
1)

�2 + �2
: (65)

It shows that the region of optimal �elds is bounded by
an inclined strip in the plane of eigenvalues �x and �y.
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Fig. 10 The bound found from the necessary conditions is
approached from above by using the translation bound for
� 1

2�max
< t < 1

2�max
.

Case: t = �2 The optimal values m�2 of m are

m�2 =
j�x � �yj

4

s
2(�2 + �2)

�2�2(
2 � 
1)
: (66)

Since m�2 2 [0; 1], the corresponding inequality for �x
and �y is satis�ed

0 � j�x � �yj �
s

8�2�2(
2 � 
1)

�2 + �2
: (67)

It shows that the region of optimal �elds is bounded by
an orthogonal inclined strip, too. Two intersections of
the two inequalities (65) and (67) de�ne the diamond-
like forbidden region.

Remark 10 The inequalities (65) and (67) match the nec-
essary condition (41) that de�nes the same the diamond-
like domain in the plane of eigenvalues. This proves the
extreme character of these conditions and, consequently,
the extreme character of the used variations. Notice the
opposite signs of inequalities in the necessary condition
(41) and su�cient conditions; (65) and (67).

6.5

General case

In Figure 10 and Figure 11, we show the �elds in the ma-
terials according to the Translation bounds. The family
of the curves correspond to di�erent values of t. For each
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–4 –2 2 4

Fig. 11 The bound found from the necessary conditions is
approached from below by using the translation bound for
� 1

2�max
< t < 1

2�max
.

�xed value of t 2 T the bound of the energy is mini-
mized over m; optimal m is given by (62) and (63) and
is subjected to the condition of being in the interval of
(0,1). The calculation of the bound was conducted using
MAPLE.

One can observe from these �gures, how the forbid-
den region obtained from su�cient conditions matches
the region calculated from necessary conditions. For any
�xed t the su�cient condition corresponds to the bound-
ary of the forbidden interval given by an ellipse; the el-
lipse elongates following the variation of t; limiting values
of t correspond to an extremely elongated ellipse which
degenerates into either a pair of parallel lines, Figure 10
or into a �nite interval, Figure 11. In Figure 10 and Fig-
ure 11, the family of lines tends to the bound and the
lines always belong to the permitted region. The forbid-
den region corresponds to the intersection of all ellipses
that are the violation of a su�cient condition.

The envelope of the ellipses matches the forbidden
region found by the necessary conditions, approximating
it from outside. On the contrary, the necessary conditions
approximate the same region from inside as a union of
all forbidden regions corresponding to a given type of the
variation.
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