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Abstract. The amazing rationality of biological "constructions" excites
the interest to modelling them by using the mathematical tools developed
in the theory of structural optimization. The structural optimization solves
a geometrical problem of the \best" displacements of di�erent materials in
a given domain, under certain loadings. Of course, this approach simpli�es
the real biological problem, because the questions of the mechanism of the
building and maintaining of structures are not addressed. The main prob-
lem is to guess a functional for the optimization of a living organism. The
optimal designs are highly inhomogeneous; their microstructures may be
geometrically di�erent, but possess the same e�ective properties. Therefore
the comparing of the various optimal geometries is not trivial. We show,
that the variety of optimal geometries shares the same characteristics of the
stress tensor in any optimal structure. Namely, special norm of this tensor
stay constant within each phase of the optimal mixture.

The paper also addresses the uncertainty of the ultimate load in bio-
logical \structures". We discuss the corresponding min-max formulation of
the optimal design problem. The design problem is formulated as minimiza-
tion of the stored energy of the project under the most unfavorable loading.
The problem is reduced to minimization of Steklov eigenvalues. Several sta-
ble solutions of various optimal design problems are demonstrated; among
them are the optimal structure of a structure stable to variations to a main
loading, the optimal speci�c sti�ness of an uncertainly loaded beam, and
the stable design of an optimal wheel.
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1. Criteria of Optimality of a Structure of Bones

1.1. SEARCH FOR AN APPROPRIATE FUNCTIONAL

This meeting is devoted to a challenge problem of an explanation of the
obvious rationality of the living organism. We mean an explicit optimality
of a natural "structure" rather than a general reference to the evolution
that perfects organisms.

The problem of bone structure provides a perfect object for such study.
Indeed, a bone is a mechanical construction, made of composites with vari-
able parameters that adapts itself to the working conditions. It performs a
clear mechanical task of supporting the organism. These features are simi-
lar to man-made composite constructions of masts, bridges, towers, domes,
etc. Therefore it is natural to apply optimization methods developed for
the engineering constructions to the bone structures.

However, the two problems are not the same. In engineering problems,
the aim is the minimization of a given functional which is not a subject of a
search or even a discussion. The problem is to �nd the structure that mini-
mizes a functional prescribed by a designer. On the contrary, the structure
of a bone is known, its properties are measurable. But it is not clear, in
what sense the bone structure is optimal.

This problem can mathematically be formulated as the search for an
goal functional of an optimization problem, if the solution of that problem
is known. This problem is not enough investigated, to our knowledge. Our
forthcoming paper (Cherkaev & Cherkaeva, 1998[2]) discusses the subject
in details. The simplest examples show that the problem can be under-
determined, and the functional is not unique.

1.2. OPTIMIZATION OF STIFFNESS AND THE CONSTANCY OF A

NORM OF STRESS TENSOR

It seems that the evolutionary bene�cial functional deals with the survival
capacity (strength) of a bone, because the break of it would mean almost
certain death of an animal. However, the criteria of the bone strength are
complex: they must deal with long-term strength as well as with impact
strength, with not well de�ned loading, etc. Presently, it is di�cult to for-
mulate a reliable mathematical optimization problem accounting for all the
complexity of the problem.

There are numerous attempts to compare the bone structure with the
structures, optimal with respect to the sti�ness of an elastic construction
(see the papers in this volume, for example). The resulting structures seem
to be similar. In our opinion, this similarity does not mean that the sti�ness
is the functional that the nature "wants" to optimize. Indeed, it is hardly
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explainable what evolutionary advantage has an animal with a bit sti�er
bones. Recall, that the greater sti�ness means only a smaller de
ection of
the loading surface. Consider a leg bone, for example. Its contraction under
the animal weight is de�nitely less than the rate of motion of the bones in
joints. Therefore it is not clear why the evolution needs sti�er bones.

In view of this remark, the question remains why structures optimizing
the sti�ness, are reminiscent to the bones structures? A possible answer
comes from the study of the local optimality condition. One can see, that
the optimality with respect to the overall sti�ness requires the constancy of
a norm of the stress in the material in each point of the structure. These
conditions show that the optimal structure adapts itself to the loading by
varying the geometry of the structure, fraction of the strong material in the
structure, but a norm of the stress remains constant everywhere:

N (�) = j�1j+ j�2j+ j�3j = constant in all points of structure (1)

(The derivation of this criterion is based on the consideration of necessary
conditions of Weierstrass type; it is similar to the derivation in (Cherkaev,
1998).)

The constancy of the norm of the stress in each point of the structure
means decreasing of its maximum, which is directly related to the strength
of the whole structure (we leave out the discussion of the exact form of the
stress norm that is responsible for the strength). These remarks motivate
us to consider the optimality of elastic behavior of constructions. We hope
that these constructions are also optimal with respect of their strength.

2. Optimization under Uncertain Loading

Uncertain Loading The other serious problem in bio-structures is the un-
certainty in the loading conditions. Applied to a bone forces are varying in
time in the natural environment and they are not completely predictable.
One have to formulate the problem to account possible variations and un-
certainties in loading.

However, in rather extensive literature on optimal design major atten-
tion is paid so far to optimization of constructions that are subject to a
�xed loading. The optimality requirement forces the structure to concen-
trate its resistivity against an applied loading, since its abilities to resist
other loadings are limited. This high sensitivity to the loading restricts the
applicability of most optimal designs. One can foresee a signi�cant change
in the optimal structure if the loading is not completely known, and below
we demonstrate this change.



4 ANDREJ CHERKAEV AND ELENA CHERKAEVA

The problem of Optimal Design The overall compliance of an elastic con-
struction is characterized by the mechanical work produced by an applied
loading. This work is equal to the total energy stored in the loaded con-
struction. It is found from the following variational problem

H(p;f) = min
�2�

�Z


W (p;�)

�
; (2)

where W is the (doubled) elastic energy

W (p;�) = � : S(p;x) : �: (3)

� is the stress tensor, the set � is (see (2), (3))

� =
n
� : r � � = 0 in 
; � = S�1(ru)s; � = �T ; n � � = f on @


o
:

(4)
f is the vector of applied boundary forces and u is the vector of de
ection,
(ru)s = � is the strain �eld, that is given by a symmetrized part of the
gradient of u, (ru)s = (ru + (ru)T )=2. S(p;x) is the tensor of elastic
compliance: a fourth order symmetric positive tensor, which depends on the
point x in 
 and on the structural parameter p that de�nes the material's
properties. The symbol (:) denotes the contraction by two indices.

The stored energy H is a quadratic functional of the loading f that
depends on the layout of the material's properties p, called the design
variables.

Consider the typical problem of optimal design: minimize H with re-
spect to layout p:

min
p2P

H(p;f); (5)

where P is the admissible set of design variables. There are many possible
settings for the set P : it can be de�ned as the set of e�ective moduli of the
composite (Gibiansky & Cherkaev, 1987), or it could describe the shape of
the body, the thickness of a thin construction, and so on.

Problem 1. Instabilities in the Optimal Design Problems. The following
example demonstrates the instability of the optimal structure and suggests
ways of reformulating the problem in order to stabilize the design.

Suppose that a square domain a b c d �lled with a composite material,
is loaded by a uniaxial loading. Suppose for simplicity, that the composite
is assembled from the material with unit compliance tensor S1 = I (the
Poisson ratio is equal to zero and the Young modulus is equal to one) and
from the void with in�nite compliance: S2 = 1. Suppose also, that the
fractions m1 of the material and m2 of the void are equal to one half each:

m1 = m2 =
1

2
: (6)



STRUCTURAL OPTIMIZATION AND BIOLOGICAL \DESIGNS" 5

.
.

Figure 1. The optimal composite under the homogeneous axial loading.

Let the domain be loaded by a uniaxial loading

f0 =

8>><
>>:

i1 on a b
0 on b c
�i1 on c d
0 on a d

: (7)

The optimal design is obviously homogeneous. The loading f0 creates
a stress �eld �1,

�1 =

�
1 0
0 0

�
; or �1 = i1 
 i1 (8)

inside the domain.
The problem is to �nd the composite that minimizes the energy of the

project under the loading f0. Obviously, the best structure is a simple
laminate, with layers oriented along the loading (see �gure 1). see ())

The e�ective compliance s1111 in the direction i1 of the loading is equal
to the harmonic mean of the (unit) material's complaince sm = 1 and the
(in�nite) complaince of the void sv =1:

s1111 =

�
m1

sm
+

m2

sv

��1
= 2 (9)

The minimal energy and the problem cost are:

W (�1) = �1 : S� : �1 = s1111�
2
11 = 2; H(�1) = 2 (10)

This solution, however, is not satisfactory from a viewpoint of a common
sense . Indeed, the laminate structure is extremely unstable, and its com-
pliance tensor is singular. The laminate structure cannot resist any loading
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but the prescribed one. Its compliance is in�nitely large for all other load-
ings. Simply speaking, the structure falls apart under any in�nitesimally
small applied stress that has either shear component, or a component along
the axis i2.

Remark 2.1 The described instability is typical for the projects that are

designed to optimally resist to a prescribed loading, at the expense of the

resistivity in other directions.

Formulation of the Problem of Stable Optimal Design. Let us consider a
problem of energy optimization of an elastic body 
 loaded by unknown
forces f applied on the boundary @
. In this paper, we focus on the de-
pendence of the optimal project on the loading that belongs to a set F :
f 2 F . We de�ne the compliance � of a construction as the maximum of
compliances upon all admissible loadings

�(p) = max
f2F

H(p;f); (11)

and we formulate the problem of the optimal design against the \worst"
loading:

min
p2P

� = min
p2P

(
max
f2F

H(p;f)

)
: (12)

To impose constraints on acting forces, we formulate a problem for a design
that o�ers a minimal compliance in a class of loadings.

Integral Constraints for the Loading. Let the set of the loadings F be
characterized by an integral constraint. It is convenient to consider the con-
straints as a quadratic form of the loading: this form leads to rather simple
equations and possesses a needed generality and 
exibility. Suppose that
an unknown loading by normal forces f 2 F is constrained as following:

F =

�
f :

I
@

f �	(S)f � 1

�
; (13)

where 	(S) is a positively de�ned weight matrix,

	(S) > 0; 8 S 2 @
: (14)

The introduced here weight function 	 expresses a priori assumptions
about the unknown loading. For instance, the case when all loadings are
equally possible, corresponds to 	 = const(S).
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The compliance of the design, introduced in (11), is given by the solution
of the problem of maximization of the stored in the design energy with
respect to the applied loadings f 2 F :

� = max
f

H(p;f) = max
f

min
�

R

W (p;�)H

@
 f �	(S)f
: (15)

The energy H is a quadratic functional of jjf jj, and (15) is the Rayleigh
ratio of two quadratic forms of f . Therefore problem (15) is reduced to
an eigenvalue problem for a linear di�erential operator. The value �(p)
corresponds to the �rst eigenfunction or to the set of the eigenfunctions,
that generate the most "dangerous" loading(s) from the considered class.
Hence we formulate the stable optimal design problem as a problem of
eigenvalue optimization:

J� = min
p2P

�(p) = min
p2P

max
f2F

min
�2�

R

W (p;�)H
@
 f �	f

: (16)

2.1. AN EIGENVALUE PROBLEM

Saddle Point Case. The question of whether or not the multiple eigenvalue
case is taking place depends on the power of the control. It the control p
is "weak", that is if the control cannot change the sequence of eigenvalues,
then we are dealing with a saddle point situation. In this case, the minimal
upon the control p eigenvalue corresponds to a unique eigenfunction f(p).
The example below illustrates this situation.

In this case the functional � (15) is a saddle function of the arguments,
and the operations of max with respect to f and min with respect to �

can be switched. Then varying the functional, we �nd the Euler equations
for the most dangerous loading. Let us �nd this loading. Variation of (15)
with respect to f gives:

� �f = �
�I

@

f �	(S)f

��1
(u� �	f) �f ; (17)

which implies the relation point-wise between the optimal loading and the
boundary de
ection

f(S) =
1

�
	�1u(S); 8S 2 @
: (18)

It is also easy to see that the stationary condition corresponds to the max-
imum not the minimum of the functional using the second variation tech-
nique.
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The problem of the most dangerous loading f0 becomes an eigenvalue
problem

1

�
= min

�

R

W (p;�)H

@
 u �	(S)�1u
: (19)

The cost � corresponds to the minimal eigenvalue given by the Rayleigh
ratio (19), and the most "dangerous" loading corresponds to the �rst eigen-
function of this problem.

Remark 2.2 One can consider also the problem of the most "favorable"

loading, that is

�� = min
f

min
�

R

W (p;�)H
@
 f �	f

: (20)

However, �� is zero. Clearly, the spectrum of the operator is clustered at

zero. A minimizing sequence is formed from often oscillating forces.

Euler Equations. The Euler equations (with respect to �) are

r � � = 0; � = S�1(p) : (ru)s in 
;
u = �	� � n on @
:

(21)

They describe the vibration of the body with inertial elements concentrated
on @
.

The problem admits the following physical interpretation: the optimal
loading forces are equal to a distribution of inertial elements (concentrated
masses) on the boundary component @
. The speci�c inertia is described
by the tensor 	, so it could include the resistance to the turning as well.
The vibration of such loaded system excites the forces that are proportional
to the de
ection u. The compliance is proportional to the eigenfrequency
of vibrations. One can see that the introduced quantity � characterizes the
domain or the construction itself, it represents the maximum of possible
stored energy under any loading from the class F .

These equations form an eigenvalue problem that possesses in�nitely
many solutions. We pick up the pair f�1; �1g that corresponds to the
maximal eigenvalue �1 = max f�kg.

The problem (19) with unit matrix 	 is called the Steklov eigenvalue
problem, which considers the ratio of integrals of di�erent dimensionality.
The corresponding Euler equation (21) has an eigenvalue in the boundary
condition. Similar optimality conditions were derived in (Cherkaeva, 1997)
for the optimal boundary sources in electrical tomography problem.
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Figure 2. The sti�ness p(x) of the optimal beam.

Problem 2. Optimal Design of a Beam. The problems for beams and bend-
ing plates admit the loading distributed in the whole domain of the de�ni-
tion: on the interval in the case of the beam, and in the plane domain in
the case of the bending plate or shell. In these problems, the loaded surface
@
 coincide with the domain 
 itself.

Consider an elastic beam whose energy density is

W = p(w00)2 � 2fw; (22)

where p � 0 is a material's sti�ness, that can be varied from point to point.
The sti�ness is subject to the integral constraint

Z l

0
p dx = V (23)

which expresses the limits on resources; f is the intensity of the normal
loading, subject to the constraint

Z l

0
f2 dx = 1: (24)

Consider an optimization problem of choosing a sti�ness p(x) that max-
imally resists to the most dangerous loading f :

min
p�0;p2(23)

max
f

min
w

�; � =

R l
0

�
p(w00)2 � 2fw

�
d xR l

0 (f
2) d x

: (25)

The stationary conditions are:

� w : (pw00)00 � f = 0; 8x 2 (0; 1); pw00jx=0 = pw00jx=l = 0; (26)

� f : f +
w

�
= 0; 8x 2 (0; 1); (27)

� p : (w00)2 = 
; 8x 2 (0; 1); (28)
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where 
 is the Lagrange multiplier for the constraint (23). This system
admits a solution

w = ��f = �
x(l � x)=2; (29)

f =

p



�
x(l � x)=2; (30)

p0 =
1

�

x

24
(x� l)

�
(x� l

2
)2 � 5l

4

�
: (31)

Accounting for the constraints, we get

� =
l5

5!V
; (32)

p(x) =
5V

4l5
x(l � x)

�
5l2 � (2x� l)2

�
; (33)

w(x) = � 1

V

s
l5

5!

x(l � x)

2
: (34)

The optimal sti�ness p(x) of the beam is shown on �gure 2. Interestingly,
that the optimal solution is found analytically.

2.2. MULTIPLE EIGENVALUES

Eigenvalue Optimization. We return to the discussion of the project that
minimizes the functional �, or minimizes the stored energy in the most
unfortunate situation. The problem has the form (16). The speci�c e�ect
of the min-max problem is the possibility of appearance of multiple eigen-
values. The mechanism of this phenomenon is the following. Minimization
of the maximal eigenvalue likely leads to the situation when its value meets
the second eigenvalue of the problem. In this case, both eigenvalues must
be minimized together, until their common value reaches the third eigen-
value, and so on. The multiplicity means that two or more loadings give the
same value of the problem. We will bring below an example demonstrat-
ing this phenomenon: the resistance of the construction to �ve di�erent
loadings in this example of the stable optimal design is the same. Similar
min-max problem with multiple eigenvalues was considered in (Cherkaev &
Cherkaeva, 1995) for nondestructive testing of the worst possible damage
by applying optimal boundary currents.

There is an extended literature on eigenvalue optimization. It was under-
stood in a di�erent setting: the maximization of the fundamental frequency.
We refer to the recent review papers (Cox & Overton, 1992; Seyranian et

al., 1994) and references therein.
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Figure 3. The schematic picture of the composite of the third rank.

Optimal Composite Structures. Consider the following problem of struc-
tural optimization. A domain made of a two-phase composite material of
an arbitrary structure is loaded by an uncertain loading f0. We want to
�nd the most resistant structure of the composite, that is to minimize the
functional (11). Here p is a vector of parameters that de�nes the tensor S�

of the e�ective compliance of the composite. For de�niteness, consider the
two-dimensional elasticity problem.

We do not know a priori, how many loadings should be taken in con-
sideration. But clearly, it is su�cient to enlarge the set of admissible com-
posites to those which minimize the sum of elastic energies caused by any
number of di�erent loadings. These composites are described in the paper
by Avellaneda (Avellaneda, 1987): in two-dimensional elasticity, they form
the class of the so-called matrix laminates of the third rank (see �gure 3).

The e�ective property tensors of these composites admit an analytical
expression through their structural parameters. To describe the class of the
e�ective tensors of these anisotropic structures, we use the natural tensor
basis

e1 =

�
1 0
0 0

�
; e2 =

�
0 0
0 1

�
; e3 =

1p
2

�
0 1
1 0

�
: (35)

Any stress and strain matrices are represented as vectors in their basis, and
the e�ective compliance S� of matrix laminates is given by the 3�3 matrix
(see (Gibiansky & Cherkaev, 1987))

S� = S1 +m2

�
(S2 � S1)

�1 +
2m1

E1
N

��1
; (36)

where S1 and S2 are the compliance matrices of the �rst and the second
materials, m1 and m2 are the volume fractions, E1 is the Young modulus
of the �rst material (which forms the envelope). The matrix N depends
on the structural parameters: on the angles �i between the tangent to the
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laminates and the axis i1, and on the relative thickness �i (see �gure 3):

N =
3X
i

�i

0
@ cos4 �i cos2 �i sin

2 �i cos3 �i sin �i
cos2 �i sin

2 �i sin4 �i cos �i sin
3 �i

cos3 �i sin �i cos �i sin
3 �i cos2 �i sin

2 �i

1
A; 3X

i

�i = 1; �i � 0:

(37)
�i and �i form the control vector p.

Problem 1 Revisited. Unstable Design for a Uniaxial Loading. Discussing
the instabilities of the optimal project in the problem 1 below, we considered
the optimization problem

min
p2P

H(p;f0); (38)

where f0 is given by (7), and the set P constrains the parameters of the
composite �i and �i. The solution of the problem is a laminate, that is
easily found from (36), (37). It corresponds to the parameters �1 = 1; �1 =
0; �2 = �3 = 0. This structure is shown on �gure 1, below we discussed the
instabilities of this solution. Indeed, the compliance tensor S� of a third
rank composite becomes (m1 = m2 = 1=2)

S� = S1 +
1

2
(N )�1 : (39)

For the optimal choice of the parameters �i; �i the matrix N (see (37))
has two zero eigenvalues, and the two eigenvalues of S� corresponding to
the shear loading and the loading in the direction i2, are in�nite (see (36)).
Hence the compliance of the structure is in�nitely large for any loading
that has a projection on these two eigenvectors.

Problem 3. Stable Design for a Uniaxial Loading. Now we reformulate
the design problem (38) to obtain a stable project. Suppose that the loading
is not exactly known. Namely, the loading �eld � can take one of the
following six values �1 + � i; i = 1; :::6, where �1 is given by (8) and

� 1;2 = �re1 =
��r 0

0 0

�
; � 3;4 = �re2 =

�
0 0
0 �r

�
;

� 5;6 = �re3 =
�

0 �r=p2
�r=p2 0

�
: (40)

Here, r > 0 is a real parameter. The additional loadings of the magnitude r
corresponding to the cases 1, 3, 5 are shown on �gure 4. The `twin' loadings
correspond to the reverse directions of the forces.
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Figure 4. The additional loadings of the magnitude r.

Assume, in addition, that r is smaller than the magnitude of the "main"
loading, which in our example is equal to one. The six loadings are viewed
as small perturbations of the main loading, that correspond to all linearly
independent directions of the symmetric tensor �. In spite of the smallness
of r, the perturbation of the functional (38) is in�nitely large, if S� is
optimally chosen. This characterizes the instability of the optimal project
to those perturbations.

Let us reformulate the optimization problem. We are looking for a
structure of a composite that minimizes the maximum of compliances
H(p;�1 + � i) upon all considered loadings.

min
p=f�i; �ig

�
max
i=1::6

H(p;�1 + � i)

�
: (41)

The obtained min-max problem asks for the minimal compliance in the
case of the "most dangerous" loading. To construct the solution of the
optimization problem, we introduce a variable z that is greater than any of
H(p;�1 + � i),

z � H(p;�1 + � i); i = 1; :::6: (42)

The problem (41) can be formulated as follows (see (Demjanov & Mal-
ozemov, 1972)):

min
p

(
z +

6X
i

�2i (z �H(p;�1 + � i))

)
; (43)

where �2i are the non-negative Lagrange multipliers by the constraints (42).
The Lagrange multiplier is equal to zero, if this relation is satis�ed as a
strong inequality, and is non-zero, if it is satis�ed as an equality (Demjanov
& Malozemov, 1972):

�2i =

�
= 0 if z > H(p;�1 + � i)
> 0 if z = H(p;�1 + � i)

: (44)
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The problem requires minimization of the weighted sum of energies of
the `dangerous' loadings (� i); i 2 I . Here I is the set of such `danger-
ous' loadings. Other loadings lead to the smaller energies H(p;�1 + � j):
H(p;�1 + � j) < H(p;�1 + � i), if i 2 I; j 62 I, and therefore to �j = 0.
This leads to the equalities

z = H(p;�1 + � i); if i 2 I;
z > H(p;�1 + � i); if i 62 I

: (45)

Applying to the problem (43), we argue that the set of dangerous load-
ings in this example consists of �ve elements, I = f1; 3; 4; 5; 6g :

H(p;�1 + � 1) > H(p;�1 + � 2); (46)

H(p;�1 + � 3) = H(p;�1 + � 4);

H(p;�1 + � 5) = H(p;�1 + � 6): (47)

The inequality (46) is explained by the observation that an additional load-
ing, if codirected with the main load, will either increase or decrease its
magnitude independently of the composite structure. Clearly, the energy of
the more intensive loading is greater.

The symmetry of the loadings # 3 and #4 and of the loadings # 5
and # 6 together with the symmetry of the set of admissible structural
tensors P suggests that the "twin" loadings lead to the same cost of the
problem. In other words, the same project p minimizes both H(p;�1+� 3)
and H(p;�1+� 4), keeping them equal to each other; the same for the other
pair of loadings. To achieve the equalities (47), we require the symmetry of
the would be optimal tensor S� (see (36)):

�1 = 1� a; �2 = �3 = a=2; �1 = 0; �2 = ��3 = �; (48)

where a and � are two parameters. Physically, we require the orthotropy of
S�.

Under the conditions (48), the matrix N (see (37)) takes the form

N = (1� a)

0
@ 1 0 0
0 0 0
0 0 0

1
A+ a

0
@ cos4 � cos2 � sin2 � 0
cos2 � sin2 � sin4 � 0

0 0 cos2 � sin2 �

1
A
(49)

and, from (39)

S� =

0
@ 1 0 0
0 1 0
0 0 1

1
A+

1

2a(1� a)

0
@ a �a cot � 0
�a cot � T 0

0 0 (1� a)csc2 � sec2 �

1
A ;

T =
1

8
( 8� 5 a+ 4 a cos 2 � + a cos 4 � ) csc4 �: (50)
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Remark 2.3 Note, that the matrix becomes singular when a ! 0, which
corresponds to unstable design.

The described class of symmetric composites is de�ned by two param-
eters � and a. The symmetry of the project eliminates the necessity to
compare the loadings except from those with numbers 1, 3, 5. It turns out
that these loadings are equally "dangerous":

H(a; �;�1 + � 1) = H(a; �;�1 + � 3) = H(a; �;�1 + � 5): (51)

Two equalities (51) allow to compute the optimal values of � and a. One
can easily see that the problem is always solvable. The optimal values of
the parameters � and a correspond to the solution of the min-max problem:

J(a; �) = min
a;�

fmax fH(a; �;�1 + � 1); H(a; �;�1 + � 3); H(a; �;�1 + � 5)gg :
(52)

Note, that the project (50) is not optimal for any single loading but it is
optimal for the set of them. The solution provides an example of a mixed
strategy in the game: loadings versus design.

Illustration. Set r = 0:1. The graph of the function J(a; �) is shown on �g-
ure 5. The optimal values of the parameters are � = 0:889; a = 0:0496; J =
2:483. We see that the compliance is bigger than the compliance of the
construction optimal for a single load. On the other hand, the found con-
struction is stable to all loadings, unlike the original design.

The picture of the optimal structure is shown on the �gure 3. Note that
a part of the material is removed from the laminates that resist the main
load. This material is placed in "reinforcements" that reduce the compliance
in all directions.

2.3. INVARIANCE OF LOADING AND SYMMETRY OF THE DESIGN

An interesting statement follows from the previous consideration is an ana-
log of the Noether theorem for an optimal design problem.

If the restrictions on the loading and the boundary conditions are in-
variant to rotation than the optimal design could be rotational symmetric.
Indeed, the symmetry of the loading restrictions implies that the ratio (16)
t possesses a symmetric set of eigenfunctions with a common eigenvalue.

Symmetry. An Optimal Wheel. The next example demonstrates the ap-
pearance of symmetric projects in a min-max optimal design problem.

Problem 4. Consider the problem of a design of an optimal wheel. A
circular domain is loaded by a non-axisymmetric loading that consists of
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Figure 5. Graph of the function J(a; �) in a proximity of the minimum.

a pair of radial forces applied to the rim and to the hub. These forces can
move circumferential, which corresponds to the revolution of the wheel. If a
loading f(S) is admissible, then any shifted loading f(S + �) is admissible
too. Here, S is the circumferential coordinate and � is an arbitrary real
number.

Consider an optimal design problem. Suppose, that it is required to
minimize the maximal compliance of the wheel in a class of forces. The
design which minimizes the maximal compliance is obviously axisymmetric
even if a particular loading is not. The symmetry comes from the min-max
requirement of the equal resistance to all forces f(S + �): the project is
independent of the angle �.

The optimal axisymmetric layout of the composite properties S�(�) in
any particular point � minimizes the integral over � of the energy distribu-
tion. The solution locally is again the third rank laminate, symmetric with
respect to angular coordinate �. The properties of the structure vary with
the radius.

In the large, it can be represented as a periodic system of radii and two
symmetric spirals (see �gure 6). The period of the spirals is in�nitesimal,
and the thickness of the materials varies with radius.

Generally, the uncertainty in the direction of possible impact leads to
cylindrical of spherical shapes of optimally designed structures. Would this
explain the shapes of skulls, eggs, and the cylindrical shapes of bones and
of bamboo stalks?
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Figure 6. The cartoon of the optimal structure of the wheel.
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