OPTIMALITY CONDITIONS ON FIELDS IN
MICROSTRUCTURES AND CONTROLLABLE
DIFFERENTIAL SCHEMES
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ABSTRACT. Optimal microstructures are layouts of several materials in
the periodicity cell which attain the extreme value of the sum of en-
ergies, W, of several linearly independent homogeneous external fields
(loadings). The extremal value of W can be found or estimated from
below by using the sufficient conditions for the corresponding noncon-
vex variational problem. We describe an algorithm for constructing
optimal isotropic three-dimensional microstructures that attain the suf-
ficient conditions. The layouts are limits of geometrical sequences with
infinitely many length scales and are nonunique. In contrast, the fields
in the optimal structures are clearly defined by sufficient constraints
that hold in each point. In the paper, we discuss a modified differential
scheme that produces an optimal laminate while keeping the field in
each point within the prescribed range.

As a first example, we describe fields in an optimal three-dimensional
polycrystal. The sufficient constraints lead to non-compatible (not rank-
one connected) fields in the disoriented fragments of the crystallite.
The apparent contradiction of non-compatibility is resolved by using
infinitely many length scales. This phenomenon is similar to the two-
dimensional example of four non-compatible gradients Pedregal (1993);
Tartar (1993); Nesi and Milton (1991).

A second example produces new optimal microstructures of three-
dimensional three-material isotropic mixture. These structures are op-
timal in the range of parameters that is larger than the previously known
range Milton (1981); Milton and Kohn (1988). The method is also appli-
cable to more than three materials as well as to elastic, electromagnetic
and other linear materials.

1. INTRODUCTION

This paper suggests an approach to building optimal composite struc-
tures. The approach is based on two principles. First, pointwise sufficient
conditions for the fields in each phase of the composite are found by us-
ing translation bounds. Second, these conditions are incorporated into the
differential scheme for building the composite which then produces optimal
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generalized microgeometry. The structures obtained in this way are infinite-
rank laminates.

The problem of the G-closure boundary — the set of structures with ex-
treme effective properties — has a long history. Optimal microstructures
are traditionally found by a two-step procedure. First, one derives suffi-
cient optimality conditions (translation bounds) for the energy. Second, one
attempts to generate minimizing sequences of layouts which satisfy these
conditions. A number of problems for two-material microstructures have
been solved, see the books Cherkaev (2000); Milton (2002) and the refer-
ences therein. However, for more complicated problems, such as the ex-
amples in this paper, a more formalized procedure for generating optimal
microstructures is necessary. The conventional approach has been to make
a clever guess of the basic microstructure with a few free design parameters
and then to optimize with respect of these parameters. If one is lucky, the
structure obtained by this process is optimal. Unfortunately for complex
problems, it has not proven easy to make a good guess.

Our approach, although not fully free of guess, exploits formalized proce-
dures. Specifically, we find the sufficient conditions for the fields in optimal
microstructures. These conditions are used in the variant of the “differen-
tial scheme” to produce an of optimal microstructures; the optimality of the
sequence is built into the procedure and is ensured at every differential step.
Thus, the problem of optimal microstructures is formulated as an extremal
problem with differential constraints.

2. THE PROBLEM

2.1. Statement. Consider a periodic structure. The periodicity cell 2 =
[0,1]> C R? has unit measure and is subdivided into subsets €; occupied
by N materials with conductivity tensors K;. Consider three separate con-
ductivity equilibria, induced by the homogeneous external fields e - (1,0, 0),
e2-(0,1,0), es-(0,0,1) applied to the cell. If we denote E = Diag(ey, 2, e3)
then the three conductivity equations in the cell can be concisely expressed
as

(1) V-KVu=0, (Vu) = E.

Here u is a three-dimensional vector function, Vu is a 3 x 3 matrix with
components (Vu);; = % and V- is the row-wise divergence operator which
J

transforms a matrix into a vector, as

3
Aij .
(V-A)i=§ 8—3;?, i=1,2,3.
j=1

The conductivity tensor K is defined to be Kj; in €);.
The sum of the three energies can be written as

(2) W = ([KVu, Vu]);
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where [A, B] is the scalar product on square matrices, [A4, B] =TrA” B, and
(-} is the average over Q. The energy W is equal to the energy of the
homogenized material with the effective conductivity K,

(3) W = [K.(Vu),(Vu)].

In this paper, we consider the following problem: for fixed e;, minimize the
energy W by choosing the layouts of the K;, assuming that the areas of 2;
(the volume fractions) are fixed: |©;] = m;. In the rest of this section we
recall the traditional method of solving this problem specifically as applied
to our two examples of polycrystals and multi-material mixtures.

2.2. Translation bounds and the fields in an optimal structure.
The bound. The translation bound (see Cherkaev (2000); Milton (2002) and
the references therein) restricts the energy, W, of a structure from below,
thus providing a bound for its effective properties. The energy is bounded
from below by the function Wy < W where

Wr = ’%‘2%‘[DT (Vu),(Vuw)|; T={T: D;j—T>0Vi=1,..,N}

and

N -1
Dr = (Z ml(Dl - T)1> +T.

1=1

Here, the D; and T are linear operators on 3 X 3 matrices. Specifically,
[D;E,E] = Tr(ETK;E) for i = 1,...,N and [TE, E] is the quadratic invari-
ant of the matrix F (see Cherkaev (2000) for the discussion of the structure
of the translators)

[TE,E] = —% ((TxE)? — TrE?)

— a constant times the sum of the three main 2 x 2 minors. Any structure
with energy equal to Wr is called translation-optimal.

In the next calculation, we represent £ by a nine-dimensional vector of
its elements by stacking its rows,

(4) E=1(e100]0e0]00e3)T.

In this space, the tensors D; are represented as 9 x 9 matrices. In particular,
an isotropic conductivity tensor K; = k;I3, where I3 is the 3 x 3 identity
matrix, is represented by the matrix D; = k;Ig, where I is the 9 x 9 identity
matrix. Furthermore, 71" is represented by the following 9 x 9 symmetric
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matrix.
O 0 0jO0 ¢t O[O0 O ¢
O 0 O0|—-t 0 OO O O
O 0 0]0 O Of—-t O O
O -t 00 O OO0 O O

(5) Tt)=—]1t 0 0,0 0 0|0 0 ¢
O 0 0]0 O OO -t O
O 0 -t 0 O OO0 O O
O 0 0]0 O —t|{O O O
t 0 0|0 ¢t O0]0 O O

The fields. The translation bound corresponds to certain constraints on the
pointwise field Vu(z) (see also Grabovsky (1996); Milton (2002)). The fields
in the phases of a translation-optimal structure pointwise satisfy the equa-
tions

-1

N
(6) (D;—T)E; =RE,, R= Y my(D,—-T)" i=1,...,N.
p=1

Besides this, the following integral constraint holds.

N
(7) Zmp/ E, dz = Ey.
p=1 2

This is automatically satisfied when the fields £; found from (6) are unique.
The matrices D; — T are nonnegative definite. When these matrices are
positive definite, the fields E; are uniquely defined by a relation

(8) E; = (D; — T) 'R Ey;

matrix (D; — T)™!'R is positive. The second equation (7) is automatically
satisfied in this case.

Nontrivial bounds correspond to the cases when the translator 7' is chosen
so that one or several of the matrices D; — T degenerate. In this case,
matrices (D; —T)~! and R are redefined on the appropriate subspace. The
fields E; belong to some linear subspaces independently of Ey. Below, we
list the possible degenerations.

(1) Assume that Dy — T (k # i) degenerates
(9) Dy —T=QrQp QeR™*"

but D; — T does not. Then the right-hand side term R degenerates
because the projection onto the orthogonal to () subspace is zero. It
assumes the form

(10) R = QyRQ}
where R € R™kXmk jg

R=(QIR™Q) .
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If several terms Dy, —T,... Dy, — T, (k1 #1,... ks # i) degenerate,
the right-hand side term R takes the form

(11) R=QRQ"
where
(12) Q= Qk, - Qk,-
The field E; depends on the projection of Ey onto the subspace Q,
(13) (D; = T)E; = QR(Q" Ey)
(2) Assume that D; — T degenerates,
(14) Di-T=0Q;Q QeR™*"

but Dy — T (k # i) are positive definite. In this case, equation (6)
does not uniquely define the field E;. Its solution has the form

(15) REy=QIE;+ah, Q'h=0

where « is an arbitrary real function that can vary in €; and h is a
n-vector orthogonal to ();. Equation (7) constrains o = a(z). The
m;-dimensional vector QiTEi — a projection onto Q); — depends on Fj
as

(16) Qi Ei = (@ Qi)~'Q{ R~ Eq.

(3) Finally, assume that two matrices D; — T and Dy — T (k # i) de-
generate as happens in the problem of an optimal polycrystal. The
field E; has the form (15), but the term R Fy is decomposed as in
(13). We obtain

(17) QT E; = (QF Qi) 'QT QR(Q" Ey).

The field F; = QiTEi + «h is nonunique and depends only on the
projection of Fy onto a subspace Q).

2.3. Examples: translation-optimal fields. We illustrate the transla-
tion bound using two examples. First is the three-dimensional isotropic
polycrystal of minimal conductivity. The structure was found in Avel-
laneda et al. (1988) and then discussed in Nesi and Milton (1991); Cherkaev
(2000); Milton (2002). Here, we focus on the fields in optimal polycrystals.
The second example is the problem of translation-optimal isotropic three-
phase composites from several isotropic components. We refer to Cherkaev
(2000); Milton (2002) for a history of this problem and further references.
It is known, in particular, that translation-optimal structures exist only in
a range of parameters: the fraction of the “best” material must be large
enough. In the next section we find new translation-optimal structures with
lower limit on the fraction of the best material.
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Polycrystals. Consider a polycrystal — a composite from differently oriented
fragments of an anisotropic material. Specifically, consider differently ori-
ented transversally isotropic conducting materials such that two eigenvalues
are equal and one differs. After normalization the equal eigenvalues are as-
sumed to be one and the third eigenvalue to be s # 1. Assume that we mix
three anisotropic materials with the same triplet of eigenvectors, but such
that the eigenvalue s corresponds to a different eigenvector in each phase.
Further, assume that the polycrystal is isotropic, and the three mixed ma-
terials enters with the same volume fraction 1/3. The extremal effective
conductivity (lower bound) and the minimizing sequence was found in Avel-
laneda et al. (1988), see also Cherkaev (2000). Here we calculate fields in
these translation-optimal structures, using the theory discussed above.
The matrices D; are diagonal.

Dy =Diag(s11|s11]s11),
Dy =Diag(ls1|1s1]1s1),

D3 =Diag(l11s|11s|11s).

The translator 7" used in this case is given by (5). The external fields are
represented by the nine component of the diagonal 3 x 3-matrix Fy. Because
we restrict to orthogonal nonzero external fields and diagonal conductivity
tensors, one can show that it is sufficient to consider diagonal pointwise
fields. Thus, we may project from the space of 9-vectors to the the first,
fifth, and ninth components (see (5)).

The nontrivial bound can be found from the projection onto this three-
dimensional subspace of the diagonal components of the fields and the cor-
responding projection of 7. The projections, D; and T of the D; and T
respectively, are

(18) -T@t) = , Di-T(t) =

(19)  Dy—T(t) = . D3 —T(t) =

S+ =+ O
S+~ B o O o+
— o O o+ o+
[ N N e

IS T S e S VR VRN
S = ~ U o~

Consider for definiteness the translation-optimal field £ in the fragments
D;. The extremal value ty of t that correspond to degenerations of all three
maftrices, is

t0:i<s— 3(3—!—8)).

The eigenvalues A, of Dy —T'(t,) are

1 1 1
AL =0, )\221\/3(3—%8)—134-1, )\3:23—1\/3(34-8)4-1
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(1)

The eigenvectors a;,~ are

o=

where
Vst +8s—s _y VsZ+8s—s
" 2s & V2 +8s—s+4

The eigenvalues of the other two phases are the same, and the eigenvectors

(4)

are obtained by a corresponding permutation of a;,”.
The fields in translation-optimal polycrystals are computed as in case 3

above. The fields Ej, Fs, F5 in the differently oriented crystallites in the
translation-optimal polycrystal are constrained as follows

E, € {rDiag(v1,1,1) : 7 € R},
(20) E; € {rDiag(1,71,1) : 7 € R},

E5 € {rDiag(1,1,71) : 7 € R}.
From this, one can derive the following equation for the effective conductivity
K, = k.I of a translation-optimal polycrystal.

k*=—2t0=%< s(s—|—8)—s).

In a translation optimal anisotropic crystallite, the field in each phase
belongs to a given line. Notice that the only rank-one connections among
the different lines lie at zero. This implies that there is no finite-rank optimal
laminate that realizes the bound. However, the optimal structure exists and
the apparent contradiction can be resolved, as we discuss in the next section.
Optimal composite from isotropic components. Consider an isotropic N-
material mixture of isotropic materials K; = k;I3 where k; € R is an isotropic
conductivity tensor; assume that the materials are ordered so that 0 < k; <

- < ky. Assume also that the external fields are orthogonal. Let us find
the fields in a structure of minimal energy.

The translation bound for the energy Corresponds to the 3 x3 matrix block

= kil and the projected translator T as in (18) where |t| < kj. Let the
vector Ej be composed of the magnitudes of three loadings Ey = (e1,e2,€3).
(That is, Ey is the projection of the diagonal components of the external
fields Ey.) The most restrictive bound corresponds to ¢ = —k;. Then lA)l —T

becomes a diad
1

1
1

Dy —T =3k1T, 1=

Sl

The remaining matrices D,, — T for m = 2,...,N are positive definite and
have the representation

Dy —T = (km + 2k)) 1T + (kp — k1) (I —117).
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The projection of the field in the first phase of a translation-optimal
structure is computed according to the case 2 as

. .+ 2 .
B = MZTEOZ + (I —1")w
3k

where w is a vector function in ; satisfying
/ (I —U"Yw dz = (I —U")E.
Q1

Notice that E; is not completely defined: the vector function w is free to
vary in €2;. Since h is always orthogonal to [, this variation does not effect
translated energy of the structure. The projected fields in the other phases
fall into the case 1:

In particular, in the three-material case (N = 3) with diagonal fields
discussed in the next section, we can summarize these properties as follows.
(P1) Tx(Vu(z)) = 37 in Oy,
(P2) VU(.’I)) = T2I3 n QQ,
(P3) VU(.’I)) = 7'3I3 n Qg,
where
ket 2k
e ki + 2k
Summing up the energy of these fields, we can also derive the standard
formula (which coincides with the results of Hashin and Shtrikman Hashin
and Shtrikman (1962) in this isotropic case) for the effective conductivity
K, = k.I of an isotropic translation-optimal N-material composite:

(TEy) fori=1,2,3.

N
D D
ky + 2k = k; + 2k, '
3. THE MODIFIED DIFFERENTIAL SCHEME

In this section, we describe a convenient method for finding optimal mul-
timaterial structures, using a modification of the the so-called differential
scheme. The traditional differential scheme uses the strategy of inserting
infinitesimal inclusions into an existing composite and calculating the in-
crement of its effective properties. It is an old idea. Bruggeman used it
in the thirties Bruggemann (1935) to compute effective properties. Later,
the scheme was reinvented in the papers Norris (1985); Lurie and Cherkaev
(1985), and was used for computing effective conductivity of an optimal
polycrystal in Avellaneda et al. (1988). Generalizations of the scheme were
suggested in Hashin (1988). The scheme we have chosen produces a rather
general class of infinite-rank laminates. Keeping the previous section in
mind, we also modify the traditional scheme to incorporate the optimality
conditions of the fields at each step.
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The particular variant of the scheme we use allows us to assemble an
isotropic composite from anisotropic materials (or material mixtures). At
every step in the process the composite we have constructed is isotropic. The
process is equivalent to the following process which may be more easy to
visualize. Starting with an infinitesimal spherical “seed” of some material,
We repeatedly wrap an infinitesimal spherical shell of a transversal isotropic
material around the current core, to grow a slightly larger core. The material
in the shell is oriented so that the eigenvector for the differing eigenvalue
points toward the center of the sphere.

In the following discussion, we apply this scheme to two examples. In
the case of three-dimensional polycrystals, the solution was found in Avel-
laneda et al. (1988). Using the modified differential scheme, we observe that
the fields indeed satisfy the optimality conditions (20) at every step of the
process.

The second case is that of three-dimensional composites made from three

isotropic conducting materials. In this case, the differential scheme contains
a control which is free to vary at each infinitesimal step of the process.
Rather than apply classical control theory to this problem, we show that
if the volume fractions of the three materials lie in a certain range, we can
obtain the optimal control by ensuring that the conditions (P1)-(P3) hold
at every step of the process.
Strategy. We first describe an isotropic differential scheme that can pro-
duce optimal structures for both the problem of polycrystals and of three-
component mixtures. The structure is obtained by a symmetric procedure
which maintains isotropy at each step. An infinitesimal step is as follows.
Three orthogonal infinitesimal strips with thickness %cm in the current pe-
riodicity cell (which has conductivity Keope(it) = kcore(11)I) are replaced by
a transversal isotropic composite with the conductivity tensor

Kadd - Dla’g(kn7 kt? kt)

and its rotated triplets. Each strip is oriented so that the two eigenvectors for
the eigenvalue k; are parallel to the interface of the lamination while the third
eigenvector is oriented along the normal. After each infinitesimal addition,
the new composite is homogenized to find the new value of the conductivity
Keore(p + 0pp). Figure 1 illustrates the replacement of the orthogonal strips
in one infinitesimal step.

Assume that the field in the core is proportional to identity

E(:u) = /B(M)IS = /B(N)Dia’g(lv L, 1)

The jump conditions require that the tangential components of the fields
and the normal components of the currents are continuous across interfaces.
The field in the added material is in rank-one connection with the core. In
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TN
od
o
[=%
[}

FIGURE 1. Replacing orthogonal strips in the differential
scheme. The arrows in the added material indicate the di-
rection of the conductivity eigenvalue k.

particular, the fields in the added layers must be (up to terms of order ju)

(21) By = B(n)Diag(a(p), 1,1),  ngr = (1,0,0)
(22) By = /B(M)Dia’g(lv O‘(:u)v 1)7 Ng2 = (07 1, 0)
(23) Ey3 = ﬂ(u)Diag(lv L, a(u))v Ng3 = (07 0, 1)

where a(u) = k;‘:—z’ff;) Thus, the field in the core, I changes like

@) A+ 0w = (1= ) ) + ()l + O
Letting 6 — 0, we find
(25) § = 5hla—1)

We can also track the relative volume fraction meye of the core in the
evolving structure and its effective properties keore(t). Because of relation

(26) Meore(pt + 0p) = (L — 6p6)Meore (1),
we find
(27) Mhoe = —Meore;  and  Meore(0) = 1

and therefore
(28) Meore(p) = €.
The effective conductivity evolves as follows Cherkaev (2000).

29)  Kal) = orlp) L) 1 20 04) = ),

We add two modification to the conventional scheme to adjust it to the
optimization problem.

(1) We allow the addition of not only pure materials, but also composite
materials, such as laminates.
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(2) We track the fields in each material at each step. Because we know
the field in the added composite, we know the fields in each com-
ponent. We use this information to choose the composite to ensure
that the optimality conditions are satisfied at every point.

3.1. Polycrystal and non-rank-one-connected fields. The translation-
optimal fields (20) are not rank-one connected. Therefore, there is no finite-
rank laminate that can attain the translation bound. However, the bound
is attainable by the infinite-rank structure as is demonstrated in Avellaneda
et al. (1988). Here, we comment on the fields in the optimal structure. In
order to initiate the differential scheme, we add an isotropic material Kigot,
into the polycrystal, choosing it so that the field in it,Fy = [y, [ is rank-one
connected to an optimal field in each of the anisotropic phases. In particular,
we can take 7 = ) in each of the cases of (20). We then modify the core by
the differential scheme described above.

To simplify the calculations, we choose to keep K ore constant. To do this,
we choose the conductivity of the core Kigotr = Kigotr 80 that the right-hand
side of (29) vanishes. (We set k; = 1 and k,, = s.) We then compute

%(\/324—83—3).

Then keore(pt) = ko stays constant for all p, but the volume fraction of the
isotropic seed Kjsoty used in the composite goes to zero as y — oo.

Notice that the field E(u) = B(u)I stays isotropic, therefore the fields in
the added infinitesimal layers have the form

B +nn’(a—1)),

and o = ,’j—g = 7, is constant. Comparing this with (20) we observe that the
fields are translation-optimal pointwise.

Then, from (25) we compute the value, 3, of the magnitude of the fields
in the added crystallites,

(30) Bn) = foel@~ D3
where 3y is the value of g in the core: Gy = 3(0).

We see from (27) that as g — oo the volume fraction of the core van-
ishes. Thus, in the limit we obtain a composite with pointwise-optimal (and
incompatible!) fields.

kisotr = kcore(,uO) =ko =

Remark. Notice that the case described is similar to the example of the
quasiconvex envelope supported by four incompatible fields, which is dis-
cussed in several papers such as Pedregal (1993); Tartar (1993); Nesi and
Milton (1991). The similarity lies in the fact that an infinite rank lami-
nate is necessary to join the fields; no finite rank laminate is sufficient. The
present problem is slightly more complex, using infinitely many fields along
the three lines. On the other hand, while the four-field problem is quite
artificial, the present three-dimensional problem originates from a problem
with a clear physical meaning.
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3.2. Optimal three-material structures. The differential scheme also
allows us to find isotropic translation-optimal structures for multimaterial
mixtures. We use it here to find new translation-optimal structures for
three-material composites. A class of such structures (the so-called “coated
spheres”) was introduced in the papers Milton (1981); Milton and Kohn
(1988). According to this construction the amount of k; is split into two
parts. Each part is used together with ke and ks, respectively, to form
two-material coated spheres so that ki is the envelope and the other mate-
rial is the core. If the effective properties of the coated spheres are equal
to each other, they can be mixed together forming an optimal multimate-
rial isotropic composite. The fields in the cores are isotropic and one can
check that all the fields satisfy the sufficient conditions (P1)-(P3). This con-
struction is geometrically possible if and only if the volume fractions of the
materials satisfy the applicability condition
. 3ky (ks — ko)

(31) n<m; <1, n: (k2+2k1)(k3—k1)(1 ma).

In the following discussion, we introduce another type of optimal structure
(“hairy spheres”, perhaps) that are geometrically possible for a larger range
of my:

3ki(ks — k2)

32 < <1, n*:= N .
(32) s S L e s — ) (VT2 T 2)
Note that

* 3 _ 2 *
VMR TI o2 ad lim L =0
n 1 —mo 3 ma—0 1)

Thus, for fixed mo, the structures we introduce are always possible for a
larger range of m; than the coated spheres structures. As mg — 0, this
difference becomes pronounced.

The structures. Consider a three-material translation-optimal composite.
The fields in the phases are described by (P1)-(P3). The following con-
struction generates optimal isotropic microstructures. We begin with an
initial core of the second material k3. Then at each step in the differential
scheme process, we can chose to add either

(1) three orthogonal layers of a transversal-isotropic composite K3 of
materials k; and k3 formed by placing a cylindrical inclusion of k3
into a matrix of ki, or

(2) three orthogonal layers of pure material k.

Any of these additions keeps the field translation-optimal.

The infinitesimal layers of Kj3 are always oriented so that the axis of
cylindrical inclusions in K3 coincides with normal to the layer. The volume
fraction () of the matrix (or 1 —v/(p) of the cylindrical inclusions) is chosen
so that the fields satisfy the optimality conditions at every step as we discuss
below. Because of this requirement, we find that v(u) decreases with p.
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The infinitesimal layers of pure ki have no volume fraction control. They
can always be added because of the freedom provided the field in k; by (P1).
Indeed, if the core has isotropic fields 81, then the field Diag(s, 3,31 — 20)
and its two permutations satisfy (P1) and are in rank-one connection with
the core.

We can continue this process as long as we like alternating between the
two types of inclusions. This procedure can produce optimal composites
for fixed volume fraction provided the volume fractions of components are
subject to some constraints.

Remark. While it is impossible to describe the infinite-rank laminate in
finite length scales, the following coated spheres structure is useful for visu-
alizing its main features. A spherical core of k9 is surrounded by a spherical
layer of k; stuffed with radially-oriented conical inclusions (hairs) of k3. The
cones become thicker with the increase of the radius to some point and then
stop. Then, this sphere is optionally enveloped by the remaining portion of
k1 that forms an outer spherical shell.

Fields in the added composites with cylindrical inclusions. The three-dimensional
transversally isotropic extremal structure with cylindrical inclusions can be
assembled either as coated cylinders, or as second-rank matrix laminates, or

as Vigdergauz-type structures Cherkaev (2000); Milton (2002). In all these
constructions, one can check that if the field in the cylindrical inclusion is

the isotropic constant field 73/, then the average field in the composite is
given by

1 k k
§TgDiag <2, I/k—j + (2 —-v), I/k—j +(2- 1/))

if the normal is (1,0,0) and a properly rotated matrix for the other two
normals. Here v is the relative volume fraction of k; in the composite. In
particular, to bring this field into rank-one connection with the core, we
need to choose

- 2k1 (,3 — 7'3)

- my(ks — k1)
Of course, this is only possible if 0 < v <1 or

ks + k1
2k

It is easy to check that this constraint is satisfied for every step of the
differential scheme if 3(0) = 73: the optimal field in material ks.

The evolution of the field in the core is described by (25); this time both 3
and « depend on u. The varying fraction v in the added laminate is chosen
to keep the fields in the structure optimal. By solving for o and then (3, we
can find the fraction v depending on p; it decreases with y as follows.

o kb —ke)
(“)_(k2+2k1)(k3—k1) e

3 < B < 13,
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Comparison to previous structures. In order to compare these structures to
the previously known optimal structures, we need to compute the relative
volume fractions in the final composite. If no layer of pure ki is added
(only “hairs”) then the construction uses the minimal amount of k1. In
this case, the volume fractions in the differential scheme satisfy the ordinary
differential equations

my () = v(p) —ma(p),  mi(0) =0

and

Solving, we find

_ o—u i Skl(k,‘g —k‘2) ( —u/3 _ _#)
mZ(lu) =c 5, ml(ﬂ) - (kg + 2k1)(k3 — kl) € € .
In particular, we find the volume fractions of the final composite by substi-
tuting:
e 3k (ks — ko) s
T = e e e = T (V2 T 2)

Observe that this value of m, is below the bound of applicability (31) of the
coated spheres construction. Additionally, since we can coat this structure
with layers of ki, we find the condition for applicability of the modified
differential scheme is (32). In this sense, the differential scheme generalizes
and improves upon previous results. It requires less amount of k; than the
coated spheres.

Remark. The following is a useful visualization for explaining why the new
structures can mimic the coated spheres. We imagine beginning with the
core of K9 and applying rule 1 above to form a thin layer of the cylindrical
inclusions. This generates a new structure whose effective conductivity lies a
bit above Ky. Now apply rule 2 to add a thin layer of pure K;. We add just
enough to bring the effective tensor back to Ky. We can continue to repeat
this two-step procedure as often as we want, decreasing mo and increasing
my and g as long as we wish, always bringing the effective conductivity
back to Ky each time. Visualized in this way, the cylindrical inclusions of
K3 are “cut short” and resemble spheres surrounded in a matrix of Ky. It
is also interesting to visualize the new structures in this way. We simply
elongate the spheres of K3 in the radial direction until they join and form
“hairs”.

This construction is easily extended to larger numbers of materials (N >
3). Choosing the initial core to be ko was convenient, but we may start with
any core we wish. At any step, we may add one of up to N different types
of layers: N — 1 types of a cylindrical inclusion in k; or a layer of pure k.
Some bookkeeping is required, but the idea is straightforward. At any step
we can add either pure k; or any coated cylinder composite for which we
can choose the volume fractions to satisfy (P1)-(P3). We also note that the
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assembly of coated spheres also extends to many materials. In all cases, the
applicability conditions for the coated spheres are stricter than those of the
structures described in this paper.
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