
OPTIMALITY CONDITIONS ON FIELDS INMICROSTRUCTURES AND CONTROLLABLEDIFFERENTIAL SCHEMESNATHAN ALBIN AND ANDREJ CHERKAEVAbstract. Optimal microstructures are layouts of several materials inthe periodicity cell which attain the extreme value of the sum of en-ergies, W , of several linearly independent homogeneous external �elds(loadings). The extremal value of W can be found or estimated frombelow by using the su�cient conditions for the corresponding noncon-vex variational problem. We describe an algorithm for constructingoptimal isotropic three-dimensional microstructures that attain the suf-�cient conditions. The layouts are limits of geometrical sequences within�nitely many length scales and are nonunique. In contrast, the �eldsin the optimal structures are clearly de�ned by su�cient constraintsthat hold in each point. In the paper, we discuss a modi�ed di�erentialscheme that produces an optimal laminate while keeping the �eld ineach point within the prescribed range.As a �rst example, we describe �elds in an optimal three-dimensionalpolycrystal. The su�cient constraints lead to non-compatible (not rank-one connected) �elds in the disoriented fragments of the crystallite.The apparent contradiction of non-compatibility is resolved by usingin�nitely many length scales. This phenomenon is similar to the two-dimensional example of four non-compatible gradients Pedregal (1993);Tartar (1993); Nesi and Milton (1991).A second example produces new optimal microstructures of three-dimensional three-material isotropic mixture. These structures are op-timal in the range of parameters that is larger than the previously knownrange Milton (1981); Milton and Kohn (1988). The method is also appli-cable to more than three materials as well as to elastic, electromagneticand other linear materials.1. IntroductionThis paper suggests an approach to building optimal composite struc-tures. The approach is based on two principles. First, pointwise su�cientconditions for the �elds in each phase of the composite are found by us-ing translation bounds. Second, these conditions are incorporated into thedi�erential scheme for building the composite which then produces optimalDate: January 15, 2006.2000 Mathematics Subject Classi�cation. 74Q20.Key words and phrases. Composite materials, polycrystalline media, homogenization,bounds on e�ective properties, multi-material mixtures, optimal microstructures.1



2 NATHAN ALBIN AND ANDREJ CHERKAEVgeneralized microgeometry. The structures obtained in this way are in�nite-rank laminates.The problem of the G-closure boundary { the set of structures with ex-treme e�ective properties { has a long history. Optimal microstructuresare traditionally found by a two-step procedure. First, one derives su�-cient optimality conditions (translation bounds) for the energy. Second, oneattempts to generate minimizing sequences of layouts which satisfy theseconditions. A number of problems for two-material microstructures havebeen solved, see the books Cherkaev (2000); Milton (2002) and the refer-ences therein. However, for more complicated problems, such as the ex-amples in this paper, a more formalized procedure for generating optimalmicrostructures is necessary. The conventional approach has been to makea clever guess of the basic microstructure with a few free design parametersand then to optimize with respect of these parameters. If one is lucky, thestructure obtained by this process is optimal. Unfortunately for complexproblems, it has not proven easy to make a good guess.Our approach, although not fully free of guess, exploits formalized proce-dures. Speci�cally, we �nd the su�cient conditions for the �elds in optimalmicrostructures. These conditions are used in the variant of the \di�eren-tial scheme" to produce an of optimal microstructures; the optimality of thesequence is built into the procedure and is ensured at every di�erential step.Thus, the problem of optimal microstructures is formulated as an extremalproblem with di�erential constraints.2. The problem2.1. Statement. Consider a periodic structure. The periodicity cell 
 =[0; 1]3 � R3 has unit measure and is subdivided into subsets 
i occupiedby N materials with conductivity tensors Ki. Consider three separate con-ductivity equilibria, induced by the homogeneous external �elds e1 � (1; 0; 0),e2 � (0; 1; 0), e3 � (0; 0; 1) applied to the cell. If we denote E = Diag(e1; e2; e3)then the three conductivity equations in the cell can be concisely expressedas(1) r �Kru = 0; hrui = E:Here u is a three-dimensional vector function, ru is a 3 � 3 matrix withcomponents (ru)ij = @ui@xj and r� is the row-wise divergence operator whichtransforms a matrix into a vector, as(r � A)i = 3Xj=1 @Aij@xj ; i = 1; 2; 3:The conductivity tensor K is de�ned to be Ki in 
i.The sum of the three energies can be written as(2) W = h[Kru;ru]i ;



OPTIMAL FIELDS AND DIFFERENTIAL SCHEMES 3where [A;B] is the scalar product on square matrices, [A;B] =TrATB, andh�i is the average over 
. The energy W is equal to the energy of thehomogenized material with the e�ective conductivity K�(3) W = [K�hrui ; hrui] :In this paper, we consider the following problem: for �xed ei, minimize theenergy W by choosing the layouts of the Ki, assuming that the areas of 
i(the volume fractions) are �xed: j
ij = mi. In the rest of this section werecall the traditional method of solving this problem speci�cally as appliedto our two examples of polycrystals and multi-material mixtures.2.2. Translation bounds and the �elds in an optimal structure.The bound. The translation bound (see Cherkaev (2000); Milton (2002) andthe references therein) restricts the energy, W , of a structure from below,thus providing a bound for its e�ective properties. The energy is boundedfrom below by the function WT �W whereWT = maxT2T [DT hrui ; hrui]; T = fT : Di � T � 0 8i = 1; :::; Ngand DT =  NXi=1 mi(Di � T )�1!�1 + T:Here, the Di and T are linear operators on 3 � 3 matrices. Speci�cally,[DiE;E] = Tr(ETKiE) for i = 1; :::; N and [TE;E] is the quadratic invari-ant of the matrix E (see Cherkaev (2000) for the discussion of the structureof the translators) [TE;E] = � t2 �(TrE)2 � TrE2�{ a constant times the sum of the three main 2 � 2 minors. Any structurewith energy equal to WT is called translation-optimal.In the next calculation, we represent E by a nine-dimensional vector ofits elements by stacking its rows,(4) E = (e1 0 0 j 0 e2 0 j 0 0 e3)T :In this space, the tensors Di are represented as 9�9 matrices. In particular,an isotropic conductivity tensor Ki = kiI3, where I3 is the 3 � 3 identitymatrix, is represented by the matrix Di = kiI9, where I9 is the 9�9 identitymatrix. Furthermore, T is represented by the following 9 � 9 symmetric



4 NATHAN ALBIN AND ANDREJ CHERKAEVmatrix.
(5) T (t) = �

0BBBBBBBBBBBB@
0 0 0 0 t 0 0 0 t0 0 0 �t 0 0 0 0 00 0 0 0 0 0 �t 0 00 �t 0 0 0 0 0 0 0t 0 0 0 0 0 0 0 t0 0 0 0 0 0 0 �t 00 0 �t 0 0 0 0 0 00 0 0 0 0 �t 0 0 0t 0 0 0 t 0 0 0 0

1CCCCCCCCCCCCAThe �elds. The translation bound corresponds to certain constraints on thepointwise �eld ru(x) (see also Grabovsky (1996); Milton (2002)). The �eldsin the phases of a translation-optimal structure pointwise satisfy the equa-tions(6) (Di � T )Ei = RE0; R = 0@ NXp=1mp(Dp � T )�11A�1 i = 1; : : : ; N:Besides this, the following integral constraint holds.(7) NXp=1mp Z
p Ep dx = E0:This is automatically satis�ed when the �elds Ei found from (6) are unique.The matrices Di � T are nonnegative de�nite. When these matrices arepositive de�nite, the �elds Ei are uniquely de�ned by a relation(8) Ei = (Di � T )�1RE0;matrix (Di � T )�1R is positive. The second equation (7) is automaticallysatis�ed in this case.Nontrivial bounds correspond to the cases when the translator T is chosenso that one or several of the matrices Di � T degenerate. In this case,matrices (Di � T )�1 and R are rede�ned on the appropriate subspace. The�elds Ei belong to some linear subspaces independently of E0. Below, welist the possible degenerations.(1) Assume that Dk � T (k 6= i) degenerates(9) Dk � T = QkQTk Q 2 R
mk�nbut Di � T does not. Then the right-hand side term R degeneratesbecause the projection onto the orthogonal to Q subspace is zero. Itassumes the form(10) R = Qk ~RQTkwhere ~R 2 R

mk�mk is~R = �QTkR�1Qk��1 :



OPTIMAL FIELDS AND DIFFERENTIAL SCHEMES 5If several terms Dk1 � T; : : : Dks � T; (k1 6= i; : : : ks 6= i) degenerate,the right-hand side term R takes the form(11) R = ~Q ~R ~QTwhere(12) ~Q = Qk1 : : : Qks :The �eld Ei depends on the projection of E0 onto the subspace ~Q,(13) (Di � T )Ei = ~Q ~R( ~QTE0)(2) Assume that Di � T degenerates,(14) Di � T = QiQTi Q 2 R
mi�nbut Dk � T (k 6= i) are positive de�nite. In this case, equation (6)does not uniquely de�ne the �eld Ei. Its solution has the form(15) RE0 = QTi Ei + �h; QTi h = 0where � is an arbitrary real function that can vary in 
i and h is an-vector orthogonal to Qi. Equation (7) constrains � = �(x). Themi-dimensional vector QTi Ei { a projection onto Qi { depends on E0as(16) QTi Ei = (QTi Qi)�1QTi R�1E0:(3) Finally, assume that two matrices Di � T and Dk � T (k 6= i) de-generate as happens in the problem of an optimal polycrystal. The�eld Ei has the form (15), but the term RE0 is decomposed as in(13). We obtain(17) QTi Ei = (QTi Qi)�1QTi ~Q ~R( ~QTE0):The �eld Ei = QTi Ei + �h is nonunique and depends only on theprojection of E0 onto a subspace ~Q.2.3. Examples: translation-optimal �elds. We illustrate the transla-tion bound using two examples. First is the three-dimensional isotropicpolycrystal of minimal conductivity. The structure was found in Avel-laneda et al. (1988) and then discussed in Nesi and Milton (1991); Cherkaev(2000); Milton (2002). Here, we focus on the �elds in optimal polycrystals.The second example is the problem of translation-optimal isotropic three-phase composites from several isotropic components. We refer to Cherkaev(2000); Milton (2002) for a history of this problem and further references.It is known, in particular, that translation-optimal structures exist only ina range of parameters: the fraction of the \best" material must be largeenough. In the next section we �nd new translation-optimal structures withlower limit on the fraction of the best material.



6 NATHAN ALBIN AND ANDREJ CHERKAEVPolycrystals. Consider a polycrystal { a composite from di�erently orientedfragments of an anisotropic material. Speci�cally, consider di�erently ori-ented transversally isotropic conducting materials such that two eigenvaluesare equal and one di�ers. After normalization the equal eigenvalues are as-sumed to be one and the third eigenvalue to be s 6= 1. Assume that we mixthree anisotropic materials with the same triplet of eigenvectors, but suchthat the eigenvalue s corresponds to a di�erent eigenvector in each phase.Further, assume that the polycrystal is isotropic, and the three mixed ma-terials enters with the same volume fraction 1=3. The extremal e�ectiveconductivity (lower bound) and the minimizing sequence was found in Avel-laneda et al. (1988), see also Cherkaev (2000). Here we calculate �elds inthese translation-optimal structures, using the theory discussed above.The matrices Di are diagonal.D1 = Diag(s 1 1 j s 1 1 j s 1 1);D2 = Diag(1 s 1 j 1 s 1 j 1 s 1);D3 = Diag(1 1 s j 1 1 s j 1 1 s):The translator T used in this case is given by (5). The external �elds arerepresented by the nine component of the diagonal 3�3-matrix E0. Becausewe restrict to orthogonal nonzero external �elds and diagonal conductivitytensors, one can show that it is su�cient to consider diagonal pointwise�elds. Thus, we may project from the space of 9-vectors to the the �rst,�fth, and ninth components (see (5)).The nontrivial bound can be found from the projection onto this three-dimensional subspace of the diagonal components of the �elds and the cor-responding projection of T . The projections, D̂i and T̂ , of the Di and Trespectively, are�T̂ (t) = 0@0 t tt 0 tt t 01A ; D̂1 � T̂ (t) = 0@1 t tt s tt t 11A ;(18) D̂2 � T̂ (t) = 0@1 t tt s tt t 11A ; D̂3 � T̂ (t) = 0@1 t tt 1 tt t s1A :(19)Consider for de�niteness the translation-optimal �eld E1 in the fragmentsD1. The extremal value t0 of t that correspond to degenerations of all threematrices, is t0 = 14 �s�ps(s+ 8)� :The eigenvalues �k of D̂1 � T̂ (t0) are�1 = 0; �2 = 14ps(s+ 8)� 14s+ 1; �3 = 54s� 14ps(s+ 8) + 1



OPTIMAL FIELDS AND DIFFERENTIAL SCHEMES 7The eigenvectors a(1)k area(1)1 =0@
1111A a(1)2 = 0@
2111A a(1)3 = 0@ 01�11Awhere 
1 = ps2 + 8s� s2s 
2 = 2 ps2 + 8s� sps2 + 8s� s+ 4 :The eigenvalues of the other two phases are the same, and the eigenvectorsare obtained by a corresponding permutation of a(i)k .The �elds in translation-optimal polycrystals are computed as in case 3above. The �elds E1; E2; E3 in the di�erently oriented crystallites in thetranslation-optimal polycrystal are constrained as followsE1 2 f�Diag(
1; 1; 1) : � 2 Rg;E2 2 f�Diag(1; 
1; 1) : � 2 Rg;(20) E3 2 f�Diag(1; 1; 
1) : � 2 Rg:From this, one can derive the following equation for the e�ective conductivityK� = k�I of a translation-optimal polycrystal.k� = �2t0 = 12 �ps(s+ 8)� s� :In a translation optimal anisotropic crystallite, the �eld in each phasebelongs to a given line. Notice that the only rank-one connections amongthe di�erent lines lie at zero. This implies that there is no �nite-rank optimallaminate that realizes the bound. However, the optimal structure exists andthe apparent contradiction can be resolved, as we discuss in the next section.Optimal composite from isotropic components. Consider an isotropic N -material mixture of isotropic materialsKi = kiI3 where ki 2 R is an isotropicconductivity tensor; assume that the materials are ordered so that 0 < k1 <� � � < kN . Assume also that the external �elds are orthogonal. Let us �ndthe �elds in a structure of minimal energy.The translation bound for the energy corresponds to the 3�3 matrix blockD̂i = kiI3 and the projected translator T̂ as in (18) where jtj � k1. Let thevector Ê0 be composed of the magnitudes of three loadings Ê0 = (e1; e2; e3).(That is, Ê0 is the projection of the diagonal components of the external�elds E0.) The most restrictive bound corresponds to t = �k1. Then D̂1�T̂becomes a diad D̂1 � T̂ = 3k1l lT ; l = 1p3 0@1111AThe remaining matrices D̂m � T̂ for m = 2; :::; N are positive de�nite andhave the representationD̂k � T̂ = (km + 2k1)l lT + (km � k1)(I � l lT ):



8 NATHAN ALBIN AND ANDREJ CHERKAEVThe projection of the �eld in the �rst phase of a translation-optimalstructure is computed according to the case 2 asÊ1 = k� + 2k13k1 lT Ê0l + (I � llT )!where ! is a vector function in 
1 satisfyingZ
1(I � llT )! dx = (I � llT )Ê0:Notice that Ê1 is not completely de�ned: the vector function ! is free tovary in 
1. Since h is always orthogonal to l, this variation does not e�ecttranslated energy of the structure. The projected �elds in the other phasesfall into the case 1:Êm = k� + 2k1km + 2k1 lT Ê0l; m = 2; :::; N:In particular, in the three-material case (N = 3) with diagonal �eldsdiscussed in the next section, we can summarize these properties as follows.(P1) Tr(ru(x)) = 3�1 in 
1,(P2) ru(x) = �2I3 in 
2,(P3) ru(x) = �3I3 in 
3,where �i = k� + 2k1ki + 2k1 (lT Ê0) for i = 1; 2; 3:Summing up the energy of these �elds, we can also derive the standardformula (which coincides with the results of Hashin and Shtrikman Hashinand Shtrikman (1962) in this isotropic case) for the e�ective conductivityK� = k�I of an isotropic translation-optimal N -material composite:1k� + 2k1 = NXi=1 miki + 2k1 :3. The modified differential schemeIn this section, we describe a convenient method for �nding optimal mul-timaterial structures, using a modi�cation of the the so-called di�erentialscheme. The traditional di�erential scheme uses the strategy of insertingin�nitesimal inclusions into an existing composite and calculating the in-crement of its e�ective properties. It is an old idea. Bruggeman used itin the thirties Bruggemann (1935) to compute e�ective properties. Later,the scheme was reinvented in the papers Norris (1985); Lurie and Cherkaev(1985), and was used for computing e�ective conductivity of an optimalpolycrystal in Avellaneda et al. (1988). Generalizations of the scheme weresuggested in Hashin (1988). The scheme we have chosen produces a rathergeneral class of in�nite-rank laminates. Keeping the previous section inmind, we also modify the traditional scheme to incorporate the optimalityconditions of the �elds at each step.



OPTIMAL FIELDS AND DIFFERENTIAL SCHEMES 9The particular variant of the scheme we use allows us to assemble anisotropic composite from anisotropic materials (or material mixtures). Atevery step in the process the composite we have constructed is isotropic. Theprocess is equivalent to the following process which may be more easy tovisualize. Starting with an in�nitesimal spherical \seed" of some material,We repeatedly wrap an in�nitesimal spherical shell of a transversal isotropicmaterial around the current core, to grow a slightly larger core. The materialin the shell is oriented so that the eigenvector for the di�ering eigenvaluepoints toward the center of the sphere.In the following discussion, we apply this scheme to two examples. Inthe case of three-dimensional polycrystals, the solution was found in Avel-laneda et al. (1988). Using the modi�ed di�erential scheme, we observe thatthe �elds indeed satisfy the optimality conditions (20) at every step of theprocess.The second case is that of three-dimensional composites made from threeisotropic conducting materials. In this case, the di�erential scheme containsa control which is free to vary at each in�nitesimal step of the process.Rather than apply classical control theory to this problem, we show thatif the volume fractions of the three materials lie in a certain range, we canobtain the optimal control by ensuring that the conditions (P1)-(P3) holdat every step of the process.Strategy. We �rst describe an isotropic di�erential scheme that can pro-duce optimal structures for both the problem of polycrystals and of three-component mixtures. The structure is obtained by a symmetric procedurewhich maintains isotropy at each step. An in�nitesimal step is as follows.Three orthogonal in�nitesimal strips with thickness 13�� in the current pe-riodicity cell (which has conductivity Kcore(�) = kcore(�)I) are replaced bya transversal isotropic composite with the conductivity tensorKadd = Diag(kn; kt; kt)and its rotated triplets. Each strip is oriented so that the two eigenvectors forthe eigenvalue kt are parallel to the interface of the lamination while the thirdeigenvector is oriented along the normal. After each in�nitesimal addition,the new composite is homogenized to �nd the new value of the conductivityKcore(�+ ��). Figure 1 illustrates the replacement of the orthogonal stripsin one in�nitesimal step.Assume that the �eld in the core is proportional to identityE(�) = �(�)I3 = �(�)Diag(1; 1; 1)The jump conditions require that the tangential components of the �eldsand the normal components of the currents are continuous across interfaces.The �eld in the added material is in rank-one connection with the core. In
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n13��

KaddKcore
Figure 1. Replacing orthogonal strips in the di�erentialscheme. The arrows in the added material indicate the di-rection of the conductivity eigenvalue kn.particular, the �elds in the added layers must be (up to terms of order ��)Ex1 = �(�)Diag(�(�); 1; 1); nx1 = (1; 0; 0)(21) Ex2 = �(�)Diag(1; �(�); 1); nx2 = (0; 1; 0)(22) Ex3 = �(�)Diag(1; 1; �(�)); nx3 = (0; 0; 1)(23)where �(�) = kcore(�)kn(�) . Thus, the �eld in the core, �I changes like(24) �(�+ ��) = �1� 13��� �(�) + 13��(�(�)�(�) +O(��)):Letting ��! 0, we �nd(25) �0 = 13�(�� 1)We can also track the relative volume fraction mcore of the core in theevolving structure and its e�ective properties kcore(�). Because of relation(26) mcore(�+ ��) = (1� ��)mcore(�);we �nd(27) m0core = �mcore; and mcore(0) = 1and therefore(28) mcore(�) = e��:The e�ective conductivity evolves as follows Cherkaev (2000).(29) k0core(�) = kcore(�)kn(�)� kcore(�)3kn(�) + 23(kt(�)� kcore(�)):We add two modi�cation to the conventional scheme to adjust it to theoptimization problem.(1) We allow the addition of not only pure materials, but also compositematerials, such as laminates.



OPTIMAL FIELDS AND DIFFERENTIAL SCHEMES 11(2) We track the �elds in each material at each step. Because we knowthe �eld in the added composite, we know the �elds in each com-ponent. We use this information to choose the composite to ensurethat the optimality conditions are satis�ed at every point.3.1. Polycrystal and non-rank-one-connected �elds. The translation-optimal �elds (20) are not rank-one connected. Therefore, there is no �nite-rank laminate that can attain the translation bound. However, the boundis attainable by the in�nite-rank structure as is demonstrated in Avellanedaet al. (1988). Here, we comment on the �elds in the optimal structure. Inorder to initiate the di�erential scheme, we add an isotropic material Kisotrinto the polycrystal, choosing it so that the �eld in it,E0 = �0; I is rank-oneconnected to an optimal �eld in each of the anisotropic phases. In particular,we can take � = �0 in each of the cases of (20). We then modify the core bythe di�erential scheme described above.To simplify the calculations, we choose to keep Kcore constant. To do this,we choose the conductivity of the core Kisotr = kisotrI so that the right-handside of (29) vanishes. (We set kt � 1 and kn � s.) We then computekisotr = kcore(�0) = k0 = 12 �ps2 + 8s� s� :Then kcore(�) = k0 stays constant for all �, but the volume fraction of theisotropic seed Kisotr used in the composite goes to zero as �!1.Notice that the �eld E(�) = �(�)I stays isotropic, therefore the �elds inthe added in�nitesimal layers have the form�(�)(I + nnT (�� 1));and � = k0kn = 
1 is constant. Comparing this with (20) we observe that the�elds are translation-optimal pointwise.Then, from (25) we compute the value, �, of the magnitude of the �eldsin the added crystallites,(30) �(�) = �0e(��1)�=3where �0 is the value of � in the core: �0 = �(0).We see from (27) that as � ! 1 the volume fraction of the core van-ishes. Thus, in the limit we obtain a composite with pointwise-optimal (andincompatible!) �elds.Remark. Notice that the case described is similar to the example of thequasiconvex envelope supported by four incompatible �elds, which is dis-cussed in several papers such as Pedregal (1993); Tartar (1993); Nesi andMilton (1991). The similarity lies in the fact that an in�nite rank lami-nate is necessary to join the �elds; no �nite rank laminate is su�cient. Thepresent problem is slightly more complex, using in�nitely many �elds alongthe three lines. On the other hand, while the four-�eld problem is quitearti�cial, the present three-dimensional problem originates from a problemwith a clear physical meaning.



12 NATHAN ALBIN AND ANDREJ CHERKAEV3.2. Optimal three-material structures. The di�erential scheme alsoallows us to �nd isotropic translation-optimal structures for multimaterialmixtures. We use it here to �nd new translation-optimal structures forthree-material composites. A class of such structures (the so-called \coatedspheres") was introduced in the papers Milton (1981); Milton and Kohn(1988). According to this construction the amount of k1 is split into twoparts. Each part is used together with k2 and k3, respectively, to formtwo-material coated spheres so that k1 is the envelope and the other mate-rial is the core. If the e�ective properties of the coated spheres are equalto each other, they can be mixed together forming an optimal multimate-rial isotropic composite. The �elds in the cores are isotropic and one cancheck that all the �elds satisfy the su�cient conditions (P1)-(P3). This con-struction is geometrically possible if and only if the volume fractions of thematerials satisfy the applicability condition(31) � � m1 � 1; � := 3k1(k3 � k2)(k2 + 2k1)(k3 � k1)(1�m2):In the following discussion, we introduce another type of optimal structure(\hairy spheres", perhaps) that are geometrically possible for a larger rangeof m1:(32) �� � m1 � 1; �� := 3k1(k3 � k2)(k2 + 2k1)(k3 � k1)( 3pm2 �m2):Note that ��� = 3pm2 �m21�m2 � 23 and limm2!0 ��� = 0:Thus, for �xed m2, the structures we introduce are always possible for alarger range of m1 than the coated spheres structures. As m2 ! 0, thisdi�erence becomes pronounced.The structures. Consider a three-material translation-optimal composite.The �elds in the phases are described by (P1)-(P3). The following con-struction generates optimal isotropic microstructures. We begin with aninitial core of the second material k2. Then at each step in the di�erentialscheme process, we can chose to add either(1) three orthogonal layers of a transversal-isotropic composite K13 ofmaterials k1 and k3 formed by placing a cylindrical inclusion of k3into a matrix of k1, or(2) three orthogonal layers of pure material k1.Any of these additions keeps the �eld translation-optimal.The in�nitesimal layers of K13 are always oriented so that the axis ofcylindrical inclusions in K13 coincides with normal to the layer. The volumefraction �(�) of the matrix (or 1��(�) of the cylindrical inclusions) is chosenso that the �elds satisfy the optimality conditions at every step as we discussbelow. Because of this requirement, we �nd that �(�) decreases with �.



OPTIMAL FIELDS AND DIFFERENTIAL SCHEMES 13The in�nitesimal layers of pure k1 have no volume fraction control. Theycan always be added because of the freedom provided the �eld in k1 by (P1).Indeed, if the core has isotropic �elds �I, then the �eld Diag(�; �; 3�1� 2�)and its two permutations satisfy (P1) and are in rank-one connection withthe core.We can continue this process as long as we like alternating between thetwo types of inclusions. This procedure can produce optimal compositesfor �xed volume fraction provided the volume fractions of components aresubject to some constraints.Remark. While it is impossible to describe the in�nite-rank laminate in�nite length scales, the following coated spheres structure is useful for visu-alizing its main features. A spherical core of k2 is surrounded by a sphericallayer of k1 stu�ed with radially-oriented conical inclusions (hairs) of k3. Thecones become thicker with the increase of the radius to some point and thenstop. Then, this sphere is optionally enveloped by the remaining portion ofk1 that forms an outer spherical shell.Fields in the added composites with cylindrical inclusions. The three-dimensionaltransversally isotropic extremal structure with cylindrical inclusions can beassembled either as coated cylinders, or as second-rank matrix laminates, oras Vigdergauz-type structures Cherkaev (2000); Milton (2002). In all theseconstructions, one can check that if the �eld in the cylindrical inclusion isthe isotropic constant �eld �3I, then the average �eld in the composite isgiven by 12�3Diag�2; � k3k1 + (2� �); � k3k1 + (2� �)�if the normal is (1; 0; 0) and a properly rotated matrix for the other twonormals. Here � is the relative volume fraction of k1 in the composite. Inparticular, to bring this �eld into rank-one connection with the core, weneed to choose � = 2k1(� � �3)�3(k3 � k1) :Of course, this is only possible if 0 � � � 1 ork3 + k12k1 �3 � � � �3:It is easy to check that this constraint is satis�ed for every step of thedi�erential scheme if �(0) = �2: the optimal �eld in material k2.The evolution of the �eld in the core is described by (25); this time both �and � depend on �. The varying fraction � in the added laminate is chosento keep the �elds in the structure optimal. By solving for � and then �, wecan �nd the fraction � depending on �; it decreases with � as follows.�(�) = 2k1(k3 � k2)(k2 + 2k1)(k3 � k1) e��=3:



14 NATHAN ALBIN AND ANDREJ CHERKAEVComparison to previous structures. In order to compare these structures tothe previously known optimal structures, we need to compute the relativevolume fractions in the �nal composite. If no layer of pure k1 is added(only \hairs") then the construction uses the minimal amount of k1. Inthis case, the volume fractions in the di�erential scheme satisfy the ordinarydi�erential equationsm01(�) = �(�)�m1(�); m1(0) = 0and m02(�) = �m2(�); m2(0) = 1:Solving, we �ndm2(�) = e��; m1(�) = 3k1(k3 � k2)(k2 + 2k1)(k3 � k1) �e��=3 � e��� :In particular, we �nd the volume fractions of the �nal composite by substi-tuting: m1 = �� = 3k1(k3 � k2)(k2 + 2k1)(k3 � k1) ( 3pm2 �m2)Observe that this value of m1 is below the bound of applicability (31) of thecoated spheres construction. Additionally, since we can coat this structurewith layers of k1, we �nd the condition for applicability of the modi�eddi�erential scheme is (32). In this sense, the di�erential scheme generalizesand improves upon previous results. It requires less amount of k1 than thecoated spheres.Remark. The following is a useful visualization for explaining why the newstructures can mimic the coated spheres. We imagine beginning with thecore of K2 and applying rule 1 above to form a thin layer of the cylindricalinclusions. This generates a new structure whose e�ective conductivity lies abit above K2. Now apply rule 2 to add a thin layer of pure K1. We add justenough to bring the e�ective tensor back to K2. We can continue to repeatthis two-step procedure as often as we want, decreasing m2 and increasingm1 and m3 as long as we wish, always bringing the e�ective conductivityback to K2 each time. Visualized in this way, the cylindrical inclusions ofK3 are \cut short" and resemble spheres surrounded in a matrix of K1. Itis also interesting to visualize the new structures in this way. We simplyelongate the spheres of K3 in the radial direction until they join and form\hairs".This construction is easily extended to larger numbers of materials (N >3). Choosing the initial core to be k2 was convenient, but we may start withany core we wish. At any step, we may add one of up to N di�erent typesof layers: N � 1 types of a cylindrical inclusion in k1 or a layer of pure k1.Some bookkeeping is required, but the idea is straightforward. At any stepwe can add either pure k1 or any coated cylinder composite for which wecan choose the volume fractions to satisfy (P1)-(P3). We also note that the
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