Gorenstein Rings

CHAU CHI TRUNG
Bachelor Thesis Defense Presentation
Supervisor: DR. TRAN NGOC HOI

University of Science - Vietnam National University Ho Chi Minh City

May 2018

Email: chauchitrung1996@gmail.com
Content

1. Origin
2. Aim of the Thesis
3. Structure of Minimal Injective Resolution
4. Gorenstein Rings
5. Examples
6. References
Grothendieck introduced the notion of Gorenstein variety in algebraic geometry.

Serre made a remark that rings of finite injective dimension are just Gorenstein rings. The remark can be found in [9].

Gorenstein rings have now become a popular notion in commutative algebra and given birth to several definitions such as nearly Gorenstein rings or almost Gorenstein rings.
Aim of the Thesis

This thesis aims to

1. present basic results on the minimal injective resolution of a module over a Noetherian ring,
2. introduce Gorenstein rings via Bass number and
3. answer elementary questions when one inspects a type of ring (e.g. Is a subring of a Gorenstein ring Gorenstein?).
Structure of Minimal Injective Resolution

Unless otherwise specified, let R be a Noetherian commutative ring with $1 \neq 0$ and M be an R-module.

Theorem (E. Matlis)

Let E be a nonzero injective R-module. Then we have a direct sum decomposition $E = \bigoplus_{i \in I} X_i$ in which for each $i \in I$, $X_i \cong E_R(R/P)$ for some $P \in \text{Spec}(R)$. For each $Q \in \text{Spec}(R)$, we set

$$\Lambda(Q, E) = \{X_i | I \in I, X_i \cong E_R(R/Q)\}.$$

Definition

Let $i \in \mathbb{Z}$ and $Q \in \text{Spec}(R)$. We set

$$\mu^i(Q, M) = \dim_{R_Q/Q_{R_Q}} \text{Ext}^i_{R_Q}(R_Q/Q_{R_Q}, M_Q)$$

and call it the i-th Bass number of M.
Theorem

Let $i \in \mathbb{Z}$, $Q \in \text{Spec}(R)$ and

$$0 \rightarrow M \xrightarrow{\partial_0} E^0_R(M) \xrightarrow{\partial_1} E^1_R(M) \rightarrow \cdots \rightarrow E^i_R(M) \xrightarrow{\partial_{i+1}} E^{i+1}_R(M) \rightarrow \cdots$$

be a minimal injective resolution of M. Then $\mu^i(Q, M)$ is equal to the cardinality of the R-modules of the form $E^i_R(R/Q)$ which appear in $E^i_R(M)$ as direct summands, that is

$$\mu^i(Q, M) = |\Lambda(Q, E^i_R(M))|.$$ Therefore,

$$E^i_R(M) = \bigoplus_{P \in \text{Spec}(R)} E_R(R/P)\mu^i(P, M).$$
Proposition

If R is local and $\id_R(R) < \infty$, then

$$\id_R(R) = \dim(R) = \depth_R(R).$$
Gorenstein Rings

Definition

Suppose that R is local. R is **Gorenstein** if $\text{id}_R(R) < \infty$. Generally, R is **Gorenstein** if R_P is Gorenstein for each $P \in \text{Spec}(R)$.

A question naturally arises: Are Gorenstein property and finite injective dimension equivalent? As a matter of fact, we have the following (Bass proved it in [9]).

Proposition

$id_R(R) < \infty$ if and only if R is Gorenstein and $\dim(R) < \infty$.
Proposition
Let (R, \mathfrak{m}) be a local ring and f_1, \ldots, f_t be an R-regular sequence. Then R is Gorenstein if and only if $R/(f_1, \ldots, f_t)R$ is Gorenstein.

Proposition (new?)
Let f_1, \ldots, f_t be an R-regular sequence and $f_i \in \text{Jac}(R)$ for all i. Then R is Gorenstein if and only if $R/(f_1, \ldots, f_t)R$ is Gorenstein.
Gorenstein Rings and Bass Number

Theorem

Let (R, m) be a local ring and set $d = \dim(R)$. TFAE:

1. R is Gorenstein.
2. $\mu^i(m, R) = 0$ for some $i > d$.
3. $\mu^i(m, R) = 0$ for every $i > d$.
4. $\mu^i(m, R) = \begin{cases} 1 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases}$.
5. $\mu^i(Q, R) = \begin{cases} 1 & \text{if } i = \dim(R_Q) \\ 0 & \text{otherwise} \end{cases}$ for every $i \in \mathbb{Z}$ and $Q \in \text{Spec}(R)$.
6. $\mu^i(m, R) = 0$ for every $i < d$ and $\mu^d(m, R) = 1$.
Theorem

Let \((R, \mathfrak{m})\) be local and suppose that \(\dim(R) = 0\) (equivalently, \(l_R(R) < \infty\)). TFAE:

1. \(R\) is Gorenstein.
2. 0 is irreducible in \(R\), that is if \(0 = I \cap J\) for some ideals \(I\) and \(J\) of \(R\), then \(I = 0\) or \(J = 0\).
3. \(l_R((0 :_R \mathfrak{m})) = 1\).
Definition

Suppose (R, m) is local. R is regular if m can be generated by $\dim(R)$ elements.

Generally, R is regular if R_P is a regular for each $P \in \text{Spec}(R)$.

Definition

Suppose R is local. R is Cohen-Macaulay if $\text{depth}_R(R) = \dim(R)$.

Generally, R is Cohen-Macaulay if R_P is Cohen-Macaulay for each $P \in \text{Spec}(R)$.

Proposition

regular rings \subset Gorenstein rings \subset Cohen-Macaulay rings.
Examples

1. Let k be a field. The formal power series ring $k[[x_1, \ldots, x_n]]$ and the polynomial ring $k[x_1, \ldots, x_n]$ are regular.

2. $k[[x, y]]/(xy)$ is Gorenstein but not regular.

3. $k[[x, y]]/(x^2, xy, y^2)$ is Cohen-Macaulay but not Gorenstein.

4. $k[[x, y]]/(x^2, xy)$ is not even Cohen-Macaulay.

5. A quotient of a Gorenstein ring is not necessarily Gorenstein: $k[[x, y, z]]/(x^3 - z^2, y^2 - xz, z^3)$ is Gorenstein but $k[[x, y, z]]/(x, y, z)^2$ is not.

6. A subring of a Gorenstein ring is not necessarily Gorenstein: for $a \geq 3$, $k[[t^a, t^{a+1}, \ldots, t^{2a-2}]]$ is Gorenstein while $k[[t^a, t^{a+1}, \ldots, t^{2a-1}]]$ is not.
Examples I

Example

7. Finite direct product of Gorenstein rings is Gorenstein.

8. Nagata ([13]) constructed the following ring. Let $R = k[x_1, x_2, \ldots]$. We set $I_1 = \{1\}$ and $I_n = \{1 + n(n-1)/2, \ldots, n(n+1)/2\}$ for each $n \geq 2$. Let $P_i = (x_j | j \in I_i)$ be prime ideals of R. Set $S = R \setminus \bigcup_{i \geq 1} P_i$. Then the ring $S^{-1}R$ is Noetherian and has infinite Krull dimension. It is in fact regular and hence it is Gorenstein and has infinite injective dimension.
References

