Caroline Series' The modular surface and continued fractions

Claire Merriman
April 21, 2020
The Ohio State University
merriman.72@osu.edu

Regular Continued Fractions

Way to represent $x>0$ as

$$
\text { - } x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ddots}}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]
$$

- Expansion terminates if and only if x is rational.
- Every irrational number has a unique continued fraction expansion.

$$
\begin{aligned}
& -\frac{1}{\left[a_{0} ; a_{1}, a_{2}, \ldots\right]}=\frac{1}{a_{0}+\left[0 ; a_{1}, a_{2}, \ldots\right]}=\left[0 ; a_{0}, a_{1}, a_{2}, \ldots\right] . \\
& -\frac{1}{\left[0 ; a_{1}, a_{2}, \ldots\right]}=a_{1}+\frac{1}{a_{2}+\left[0 ; a_{3}, \ldots\right]}=\left[a_{1} ; a_{2}, a_{3}, \ldots\right] .
\end{aligned}
$$

Gauss map

Define $T:[0,1] \rightarrow[0,1]$ by

$$
T(x)=\left\{\begin{array}{ll}
\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}= \begin{cases}\frac{1}{x}-k & \text { for } x \in\left(\frac{1}{k+1}, \frac{1}{k}\right\rfloor \\
0 & \text { if } x=0\end{cases}\right.
$$

Gauss map

$T\left(\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]\right)=\left[0 ; a_{2}, a_{3}, \ldots\right]=\left[a_{2}, a_{3}, \ldots\right]$

Natural Extension

Define $\bar{T}:[0,1)^{2} \rightarrow[0,1)^{2}$ by

$$
\bar{T}(x, y)= \begin{cases}\left(\frac{1}{x}-k, \frac{1}{y+k}\right) & \text { for } x \in\left(\frac{1}{k+1}, \frac{1}{k}\right] \\ (0, y) & \text { if } x=0\end{cases}
$$

$\bar{T}\left(\left(\left[a_{1}, a_{2}, \ldots\right],\left[a_{0}, a_{-1}, \ldots\right]\right)\right)=\left(\left[a_{2}, a_{3}, \ldots\right],\left[a_{1}, a_{0}, a_{-1}, \ldots\right]\right)$.

Farey Tessellation

$\mathbb{H}:=\{x+i y \mid y>0\}$
Act by $\operatorname{PSL}(2, \mathbb{Z})$ where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=\frac{a z+b}{c z+d}$

Farey Tessellation

Rest of this talk base on Caroline Series, The modular surface and continued fractions, J. London Math. Soc. 2 (1985).
$\mathbb{H}:=\{x+i y \mid y>0\}$
Connect two rational numbers $\frac{p}{q}, \frac{p^{\prime}}{q^{\prime}}$ iff $p q^{\prime}-p^{\prime} q= \pm 1$.
Images of the imaginary axis under $\operatorname{PSL}(2, \mathbb{Z})$.

Modular Surface

Modular Surface

Translating back to the upper half plane

1. Hyperbolic geodesics are unique. Identify $\left(\gamma_{\infty}, \gamma_{-\infty}\right) \in \mathbb{R}^{2}$ with the geodesic γ from $\gamma_{-\infty}$ to γ_{∞}.

$$
\begin{aligned}
& \mathcal{S}=\left\{\left(\gamma_{\infty}, \gamma_{-\infty}\right) \in \mathbb{R}^{2}: 0<\left|\gamma_{-\infty}\right| \leq 1 \leq\left|\gamma_{\infty}\right|\right. \\
&\left.-\operatorname{sign}\left(\gamma_{-\infty}\right)=-\operatorname{sign}\left(\gamma_{\infty}\right)\right\} \\
& \mathcal{A}=\left\{\gamma \in \mathbb{H}:\left(\gamma_{\infty}, \gamma_{-\infty}\right) \in \mathcal{S}\right\}
\end{aligned}
$$

2. Unit tangent vectors define geodesics. Let ξ_{γ} be where γ intersects $i \mathbb{R}$. Identify $\left(u_{\gamma}, \xi_{\gamma}\right) \in T^{1} \mathcal{M}=T^{1}(P S L(2, \mathbb{Z}) \backslash \mathbb{H})$ with $\left(\gamma_{\infty}, \gamma_{-\infty}\right)$
3. A map on \mathcal{S} induces a map on $T^{1} \mathcal{M}$.

Modular Surface

Modular Surface

Modular Surface

Geodesics

Let \mathcal{S} be the set of geodesics γ with endpoints

- $\gamma_{-\infty} \in(-1,0), \gamma_{\infty} \geq 1$
- $\gamma_{-\infty} \in(0,1), \gamma_{\infty} \leq-1$

Some segments of type L

Some segments of type R

Example

Example

Let $X=\left\{\left(u_{\gamma}, \xi_{\gamma}\right) \in T^{1} \mathcal{M}\right.$: cutting sequence change type at $\left.\xi_{\gamma}\right\}$.
Theorem (Series Theorem A, '84)
The map $i: \mathcal{A} \rightarrow X, i(\gamma)=\pi\left(\left(u_{\gamma}, \xi_{\gamma}\right)\right)$ is surjective, continuous, and open. It is injective except for the two oppositely oriented geodesics joining +1 to -1 have the same image.

A geodesic from $\gamma_{-\infty}$ to γ_{∞} has two options:

- $\gamma_{-\infty} \in(-1,0), \gamma_{\infty} \in(1, \infty)$. This geodesic has the coding $\ldots L^{n_{-2}} R^{n_{-1}} \xi_{\gamma} L^{n_{0}} R^{n_{1}} L^{n_{2}} \ldots$

$$
\gamma_{-\infty}=-\left[n_{-1}, n_{-2}, \ldots\right] \text { and } \gamma_{\infty}=n_{0}+\left[n_{1}, n_{2}, \ldots\right]
$$

- $\gamma_{-\infty} \in(0,1), \gamma_{\infty} \in(-\infty,-1)$.

$$
\gamma_{-\infty}=\left[n_{-1}, n_{-2}, \ldots\right] \text { and } \gamma_{\infty}=-\left(n_{0}+\left[n_{1}, n_{2}, \ldots\right]\right)
$$

Example

$\ldots L R^{2} \xi_{\gamma} L^{2} R L^{3} \ldots$ corresponds to $-[0 ; 3,1, \ldots]$ and $[2 ; 1,3, \ldots]$

Action on Upper Half Plane

Case $1, \gamma_{\infty}>1$.
Define ρ on \mathcal{S} by $(x, y) \mapsto\left(\frac{1}{a_{1}-x}, \frac{1}{a_{1}-y}\right)$.

$$
\ldots L^{n_{-1}} R^{n_{0}} \xi_{\gamma} L^{n_{1}} R^{n_{2}} \ldots \mapsto L^{n_{-1}} R^{n_{0}} L^{n_{1}} \xi_{\rho(\gamma)} R^{n_{2}} \ldots
$$

Case $2, \gamma_{\infty}<-1,(x, y) \mapsto\left(\frac{1}{-a_{1}-x}, \frac{1}{-a_{1}-y}\right)$.

Section

Proposition (Corollary to Series' Theorems B \& C)

Let X be the set of unit tangent vectors $u_{\gamma} \in T^{1} \mathcal{M}$ based at $\pi\left(\xi_{\gamma}\right)$ pointing along $\pi(\gamma)$, and $i(\gamma)=u_{\gamma}$.

The map $\bar{\rho}: X \rightarrow X$ given by $\bar{\rho}\left(u_{\gamma}\right)=i(\rho(\gamma))$ is invertible, and the diagram

$$
\begin{aligned}
& X \xrightarrow{\bar{\rho}} X \\
& \text { Joi }{ }^{-1} \downarrow \quad \downarrow^{\text {Joi }}{ }^{-1} \\
& (0,1]^{2} \xrightarrow{\bar{T}}(0,1]^{2} \text {. }
\end{aligned}
$$

commutes, where $J: \mathcal{S} \rightarrow(0,1]^{2}$ is the invertible map defined by

$$
J(x, y):=\operatorname{sign}(x)(1 / x,-y)
$$

Invariant Measure

The invariant measure for the geodesic flow on $T^{1} \mathbb{H}$ is

$$
\frac{d \alpha d \beta d \theta}{(\alpha-\beta)^{2}}
$$

Using the map J and projecting, we get

$$
\begin{gathered}
d \bar{\mu}=\frac{1}{\log 2} \frac{d x d y}{(x y+1)^{2}} \\
d \mu=\frac{1}{\log 2} \frac{d x}{x+1}
\end{gathered}
$$

We find that T and \bar{T} are ergodic:
T is ergodic if for every μ-measurable set A such that $T^{-1} A=A$, either $\mu(A)=0$ or $\mu(X \backslash A)=0$.

Applications

- $\alpha>1$ has a purely periodic continued fraction expansion if and only if α is a quadratic irrational with $\alpha=\overline{\left[n_{1} ; n_{2}, \ldots, n_{2 r}\right]},-\bar{\alpha}=\overline{\left[0 ; n_{2 r}, n_{2 r-1}, \ldots, n_{1}\right]}$
- The tail of the expansion of α is periodic if and only if α is a quadratic irrational.
- $d\left(\xi_{\gamma}, \eta_{\gamma}\right)=\frac{1}{2} \log \left(\gamma_{\infty} \gamma_{-\infty} \rho\left(\gamma_{\infty}\right) \rho\left(\gamma_{-\infty}\right)\right)$.
- Length of closed geodesics on \mathcal{M} is $\frac{1}{2} \log \frac{\left(\rho^{2 r}\right)^{\prime}\left(\gamma_{\infty}\right)}{\left(\rho^{2}\right)^{\prime}\left(\gamma_{-\infty}\right)}$.

