# Arnoux's coding of the geodesic flow on the modular surface

Thomas A. Schmidt

Oregon State University

25 October 2023 OSET

# Arnoux's coding of the geodesic flow on the modular surface

Thomas A. Schmidt

Oregon State University

25 October 2023 OSET 1 Background and Summary of results

2 Arnoux's domains

3 Coordinates and geodesic flow

# The paper

#### From MathSciNet

Arnoux, Pierre: Le codage du flot géodésique sur la surface modulaire. (French. English, French summary) [Coding of the geodesic flow on the modular surface] Enseign. Math. (2) 40 (1994), no. 1-2, 29–48.

# The paper

- From MathSciNet
  - Arnoux, Pierre: Le codage du flot géodésique sur la surface modulaire. (French. English, French summary) [Coding of the geodesic flow on the modular surface] Enseign. Math. (2) 40 (1994), no. 1-2, 29–48.
- GOALS of paper: In an elementary manner, give explicit coordinates for the unit tangent bundle of the modular surface and thereby derive explicit expressions for the geodesic flow. Relate this to continued fractions.

# The paper

- From MathSciNet
  - Arnoux, Pierre: Le codage du flot géodésique sur la surface modulaire. (French. English, French summary) [Coding of the geodesic flow on the modular surface] Enseign. Math. (2) 40 (1994), no. 1-2, 29–48.
- GOALS of paper: In an elementary manner, give explicit coordinates for the unit tangent bundle of the modular surface and thereby derive explicit expressions for the geodesic flow. Relate this to continued fractions.
- Earlier work: Ford, Artin, Adler-Flatto, Series. For more on coding, see various works of S. Katok.

■ The modular surface is  $\mathcal{M} := SL_2(\mathbb{Z}) \setminus \mathbb{H}$  where  $\mathbb{H} = \{x + iy \mid y > 0\}$  with ds = (dx + dy)/y.

- The modular surface is  $\mathcal{M} := SL_2(\mathbb{Z}) \setminus \mathbb{H}$  where  $\mathbb{H} = \{x + iy \mid y > 0\}$  with ds = (dx + dy)/y.
- Möbius action allows  $\mathbb{H} \longleftrightarrow SL_2(\mathbb{R})/SO(2)$ ,

- The modular surface is  $\mathcal{M} := SL_2(\mathbb{Z}) \setminus \mathbb{H}$  where  $\mathbb{H} = \{x + iy \mid y > 0\}$  with ds = (dx + dy)/y.
- Möbius action allows  $\mathbb{H} \longleftrightarrow SL_2(\mathbb{R})/SO(2)$ ,
- $T^1(\mathbb{H}) \longleftrightarrow PSL_2(\mathbb{R}),$

- The modular surface is  $\mathcal{M} := SL_2(\mathbb{Z}) \setminus \mathbb{H}$  where  $\mathbb{H} = \{x + iy \mid y > 0\}$  with ds = (dx + dy)/y.
- Möbius action allows  $\mathbb{H} \longleftrightarrow SL_2(\mathbb{R})/SO(2)$ ,
- $T^1(\mathbb{H}) \longleftrightarrow PSL_2(\mathbb{R}),$
- lacksquare and,  $T^1(\mathcal{M})\longleftrightarrow \mathit{SL}_2(\mathbb{Z})ackslash \mathit{SL}_2(\mathbb{R}).$

# Lattices of covolume one and $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$

We can also identify  $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$  with 'area one' lattices:

■ A lattice  $\Gamma \subset \mathbb{R}^2$  uniquely corresponds to the set of its positively oriented bases.

# Lattices of covolume one and $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$

We can also identify  $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$  with 'area one' lattices:

- A lattice  $\Gamma \subset \mathbb{R}^2$  uniquely corresponds to the set of its positively oriented bases.
- A positively oriented basis of a lattice uniquely corresponds to the rows of a 2 × 2 real matrix of positive determinant.

# Lattices of covolume one and $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$

We can also identify  $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$  with 'area one' lattices:

- A lattice  $\Gamma \subset \mathbb{R}^2$  uniquely corresponds to the set of its positively oriented bases.
- A positively oriented basis of a lattice uniquely corresponds to the rows of a 2 × 2 real matrix of positive determinant.
- A lattice of covolume one has its positively oriented bases forming elements of  $SL_2(\mathbb{R})$ . Oriented changes of basis for such a  $\Gamma$  are effectuated exactly by left multiplication by elements of  $SL_2(\mathbb{Z})$ .

## Theorem 1, Canonical bases

# Theorem (Arnoux's coset representatives) The set $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$ is in 1-1 correspondence with the set of matrices

$$A=egin{pmatrix} a&c\\-b&d \end{pmatrix}$$
 such that  $(a,b,c,d)\in\Omega_0\cup\Omega_1\cup\Omega_2$  where

$$\Omega_0 = \{(a, b, c, d) \in \mathbb{R}^4 \mid ad + bc = 1, \ 0 < b < 1 \le a, \ 0 \le c < d \},$$

$$\Omega_1 = \{(a, b, c, d) \in \mathbb{R}^4 \mid ad + bc = 1, \ 0 \le a < 1 \le b, \ 0 \le d < c \},$$

$$\Omega_2 = \{(a, b, 0, d) \in \mathbb{R}^4 \mid ad = 1, \ 0 < b < a < 1 \}.$$

Geodesic flow acts (locally) as  $(a, b, c, d) \mapsto (ae^{t/2}, be^{t/2}, ce^{-t/2}, de^{-t/2}).$ 

# Theorem 2: Zippered rectangles give (interiors of) $\Omega_0, \Omega_1$

**Theorem (Arnoux's construction)** To each lattice  $\Gamma$ , meeting the coordinate axes only at the origin, the *algorithm below* uniquely associates a positively oriented basis and a fundamental domain that is the union of two rectangles whose bases are aligned and such that one rectangle has width less than 1 and the other greater than one, with the wider taller than the narrower rectangle.

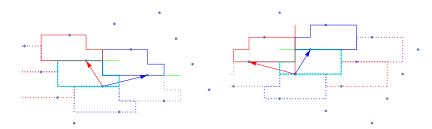


Figure: Cases:  $\Omega_0$  and  $\Omega_1$ .

# Theorem 3, Gauss map as factor

**Theorem (Arnoux's extension)** Let  $\Sigma_0 \subset \Omega_0$  be the subset where a=1, and  $\Sigma_1 \subset \Omega_1$  be the subset where b=1. Then

- (1) the geodesic flow maps the 2D boundary face  $\Sigma_0$  to a boundary face of  $\Omega_0$  that can naturally be identified with  $\Sigma_1$ ;
- (2) the geodesic flow maps  $\Sigma_1$  to a face that can in turn be identified with  $\Sigma_0$ ;
- (3) and, there are real coordinates so that these maps can be given by

$$egin{aligned} \Sigma_\epsilon &
ightarrow \Sigma_{1-\epsilon} \ (x,y) &\mapsto (1/x - \lfloor 1/x 
floor, x-x^2y). \end{aligned}$$

Lebesgue measure is invariant here. This gives a double cover of the natural extension of the standard Gauss map of regular continued fractions.

# Theorem 4, verifying Lévy's constant

■ Theorem (Lévy 1936) For almost every real  $x \in [0,1]$  the series of its regular continued fraction denominators  $(q_n)_{n\geq 0}$  satisfies

$$\lim_{n\to\infty}\frac{\log q_n}{n}=\frac{\pi^2}{12\log 2}.$$

# Theorem 4, verifying Lévy's constant

■ Theorem (Lévy 1936) For almost every real  $x \in [0,1]$  the series of its regular continued fraction denominators  $(q_n)_{n\geq 0}$  satisfies

$$\lim_{n\to\infty}\frac{\log q_n}{n}=\frac{\pi^2}{12\log 2}.$$

Arnoux easily shows that

$$\frac{\pi^2}{12\log 2} = \frac{\operatorname{vol} \mathcal{T}^1(\mathcal{M})}{2\mathrm{Area}(\Sigma_0 \cup \Sigma_1)}.$$

# Theorem 4, verifying Lévy's constant

■ Theorem (Lévy 1936) For almost every real  $x \in [0,1]$  the series of its regular continued fraction denominators  $(q_n)_{n\geq 0}$  satisfies

$$\lim_{n\to\infty}\frac{\log q_n}{n}=\frac{\pi^2}{12\log 2}.$$

Arnoux easily shows that

$$\frac{\pi^2}{12\log 2} = \frac{\operatorname{vol} T^1(\mathcal{M})}{2\operatorname{Area}(\Sigma_0 \cup \Sigma_1)}.$$

Let  $\tau_n$  be the n-th return time of (thus, the flow value bringing)  $(x,0) \in \Sigma_0$  to  $\Sigma_0 \cup \Sigma_1$ . He shows that  $q_n/n$  and  $\tau_n/2n$  limit to the same value and argues by Birkhoff sums using the ergodicity of the geodesic flow to get the result.

# Algorithm

■ Choose  $x \in \Gamma$ .

# Algorithm

- Choose  $x \in \Gamma$ .
- For each  $y \in \Gamma$  with  $y \neq x$ , let  $H_y$  be the horizontal open interval segment of length 2 centered at y. (Green in figure.)

# Algorithm

- Choose  $x \in \Gamma$ .
- For each  $y \in \Gamma$  with  $y \neq x$ , let  $H_y$  be the horizontal open interval segment of length 2 centered at y. (Green in figure.)
- The upwards vertical ray emanating from x meets a unique first  $H_y$ . (Red in figure.) Assume this intersection is to the left of y. This is the case of  $\Omega_1$ .

# Figure: Construction begins



Figure: Beginning of construction, case of intersection left of y.

# Algorithm, cont'd

Let a be the (horizontal) distance from the intersection to y and c be the (vertical) distance from it to x. Thus, y = x + a + ic using complex notation.

# Algorithm, cont'd

- Let a be the (horizontal) distance from the intersection to y and c be the (vertical) distance from it to x. Thus, y = x + a + ic using complex notation.
- Let V<sub>x</sub> be the open vertical segment from x up to H<sub>y</sub>. Of those z ∈ Γ such that H<sub>z</sub> extends to intersect V<sub>x</sub>, there is a unique z minimizing the distance from z to V<sub>x</sub>. (See blue in figure.) Choose this z, label that (horizontal) distance b and label the (vertical) distance from x up to the point of intersection as d.

# Algorithm, cont'd

- Let a be the (horizontal) distance from the intersection to y and c be the (vertical) distance from it to x. Thus, y = x + a + ic using complex notation.
- Let V<sub>x</sub> be the open vertical segment from x up to H<sub>y</sub>. Of those z ∈ Γ such that H<sub>z</sub> extends to intersect V<sub>x</sub>, there is a unique z minimizing the distance from z to V<sub>x</sub>. (See blue in figure.) Choose this z, label that (horizontal) distance b and label the (vertical) distance from x up to the point of intersection as d.
- Note that  $0 < a < 1 \le b$ ; 0 < d < c.

■ Form the bottom of our reversed 'L' as the union of the horizontal segments: of length *a* to the left of *x* and of length *b* to the right.

- Form the bottom of our reversed 'L' as the union of the horizontal segments: of length *a* to the left of *x* and of length *b* to the right.
- Above the left portion of the bottom, erect the rectangle of height d.

- Form the bottom of our reversed 'L' as the union of the horizontal segments: of length *a* to the left of *x* and of length *b* to the right.
- Above the left portion of the bottom, erect the rectangle of height d.
- Above the right portion of the bottom, erect the rectangle of height c.

- Form the bottom of our reversed 'L' as the union of the horizontal segments: of length *a* to the left of *x* and of length *b* to the right.
- Above the left portion of the bottom, erect the rectangle of height d.
- Above the right portion of the bottom, erect the rectangle of height c.
- Form the matrix  $A = \begin{pmatrix} a & c \\ -b & d \end{pmatrix}$ .

## The fundamental domain $\mathcal{F}$ ; basis: rows of A

Let  $\mathcal F$  be the reversed 'L' so formed. One shows that  $\mathcal F$  is a fundamental domain for  $\Gamma$  and also the rows of A are a positively oriented basis of  $\Gamma$ . (See figure, next slide.) The theorem thus holds in this case.

## Figure: tiling by images of $\mathcal{F}$ ; identifications give torus

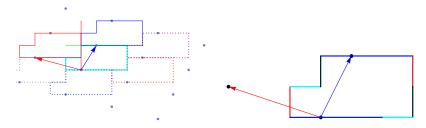
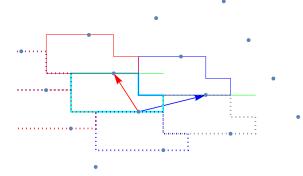


Figure: Case of intersection left of y. Left:  $\mathcal{F}$  and its translates. Right: the fundamental domain identifies to a torus. Note that it is the suspension of an IET. Recall  $A = \begin{pmatrix} a & c \\ -b & d \end{pmatrix}$ .

# $\Omega_0$ , case of 'L' shape

When the first intersection above is to the **right** of y, we label differently so as to still find an oriented basis corresponding to

$$A = \begin{pmatrix} a & c \\ -b & d \end{pmatrix}$$
. Now,  $0 < b < 1 \le a$ ;  $0 < c < d$ .



# Accounting for all $\Gamma$ , 1

Try to apply the algorithm to a general  $\Gamma$ . It could be  $\Gamma$  includes a 'short' vertical vector and we find that y lies directly above x. If the algorithm succeeds other than this, we choose to include this in the case of  $\Omega_1$ . That is, we include the possibility of a=0 in the definition of  $\Omega_1$ .

# Accounting for all $\Gamma$ , 1

- Try to apply the algorithm to a general  $\Gamma$ . It could be  $\Gamma$  includes a 'short' vertical vector and we find that y lies directly above x. If the algorithm succeeds other than this, we choose to include this in the case of  $\Omega_1$ . That is, we include the possibility of a=0 in the definition of  $\Omega_1$ .
- This was an innocuous choice, as the (b=0)-boundary of  $\Omega_0$  as a subset of  $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$  is identified with the (a=0)-boundary of  $\Omega_1$ :

$$\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} 0 & a^{-1} \\ -a & a^{-1} - c \end{pmatrix}.$$

## Accounting for all $\Gamma$ , 2

The algorithm in the restricted setting remains unchanged if we include x in  $V_x$ . Now a general  $\Gamma$  could have a 'short' horizontal vector so x and z are horizontally aligned. We hence include the possibility of c=0 in the  $\Omega_0$  and d=0 in the  $\Omega_1$ .

## Accounting for all $\Gamma$ , 2

- The algorithm in the restricted setting remains unchanged if we include x in  $V_x$ . Now a general  $\Gamma$  could have a 'short' horizontal vector so x and z are horizontally aligned. We hence include the possibility of c=0 in the  $\Omega_0$  and d=0 in the  $\Omega_1$ .
- Similarly, if  $\Gamma$  has a 'very short' horizontal vector, it could be that there are two choices for y. Choose the option whose intersection point is to the right; thus, 0 < b < 1. Let the horizontal distance between those two choices be a. Then we find a basis given by (a,0),(-b,d). The case of  $a \ge 1$  is already in  $\Omega_0$ . Otherwise, we have  $0 < b < a < 1,\ c = 0$  and define  $\Omega_2$  to address exactly this case.

## Accounting for all $\Gamma$ , 2

The algorithm in the restricted setting remains unchanged if we include x in  $V_x$ . Now a general  $\Gamma$  could have a 'short' horizontal vector so x and z are horizontally aligned. We hence include the possibility of c=0 in the  $\Omega_0$  and d=0 in the  $\Omega_1$ .

Similarly, if  $\Gamma$  has a 'very short' horizontal vector, it could be that there are two choices for y. Choose the option whose intersection point is to the right; thus, 0 < b < 1. Let the

- horizontal distance between those two choices be a. Then we find a basis given by (a,0),(-b,d). The case of  $a \ge 1$  is already in  $\Omega_0$ . Otherwise, we have  $0 < b < a < 1,\ c = 0$  and define  $\Omega_2$  to address exactly this case.
- With this, all covolume one Γ are accounted for with the union

$$egin{aligned} &\Omega_0 = \{(a,b,c,d) \in \mathbb{R}^4 \mid ad+bc=1, \ 0 < b < 1 \leq a, \ 0 \leq c < d \}, \ &\Omega_1 = \{(a,b,c,d) \in \mathbb{R}^4 \mid ad+bc=1, \ 0 \leq a < 1 \leq b, \ 0 \leq d < c \}, \ &\Omega_2 = \{(a,b,0,d) \in \mathbb{R}^4 \mid ad=1, \ 0 < b < a < 1 \}. \end{aligned}$$

#### Geodesic flow

■ Under the identification of  $T^1\mathcal{M}$  with  $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$ , the geodesic flow is effectuated by right multiplication by diagonal matrices of the form  $g_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ .

#### Geodesic flow

- Under the identification of  $T^1\mathcal{M}$  with  $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$ , the geodesic flow is effectuated by right multiplication by diagonal matrices of the form  $g_t=\begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ .
- This flow acts on the various  $\mathcal{F}$ , stretching horizontally while contracting vertically. Similarly for the image of our positively oriented bases.

#### Geodesic flow

- Under the identification of  $T^1\mathcal{M}$  with  $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$ , the geodesic flow is effectuated by right multiplication by diagonal matrices of the form  $g_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ .
- This flow acts on the various  $\mathcal{F}$ , stretching horizontally while contracting vertically. Similarly for the image of our positively oriented bases.
- In particular,  $(a, b, c, d) \mapsto (ae^{t/2}, be^{t/2}, ce^{-t/2}, de^{-t/2})$ .

#### Entrance and exit; 3-D

■ With mild abuse,

$$\Omega_0 = \{(a, b, c) \in \mathbb{R}^3 \mid 0 < b < 1 \le a, \ 0 \le c < 1/(a+b) \}.$$

The flow enters on the a=1-face of boundary and exits on b=1-face of boundary. (See next figure, then come back.)

#### Entrance and exit; 3-D

- With mild abuse,  $\Omega_0 = \{(a, b, c) \in \mathbb{R}^3 \mid 0 < b < 1 \le a, \ 0 \le c < 1/(a+b)\}$ . The flow enters on the a = 1-face of boundary and exits on b = 1-face of boundary. (See next figure, then come back.)
- Cut-and-stack of our rectangles (see figure) shows that exiting face is identified with the entering face, also given by b=1, of  $\Omega_1=\{(a,b,d)\in\mathbb{R}^4\mid 0\leq a<1\leq b,\ 0\leq d<1/(a+b)\}$ , as

$$\begin{pmatrix} 1 & \lfloor a \rfloor \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ -1 & d \end{pmatrix} = \begin{pmatrix} \{a\} & c + \lfloor a \rfloor d \\ -1 & d \end{pmatrix},$$

since 
$$0 \le \{a\} = a - \lfloor a \rfloor < 1$$
 and  $ad = (1-c) \le 1 < a/(1+\{a\})$  (since the 'exit' has  $a > 1$ ).

# Flow figures

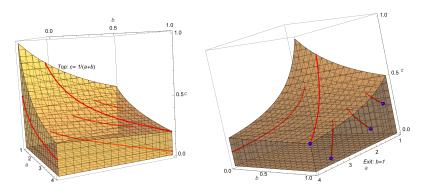


Figure: Two views of flow through  $\Omega_0$  from a=1 to b=1 faces.

## Cut-and-stack figure

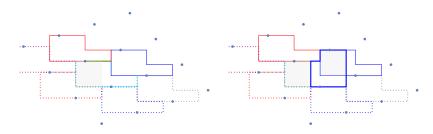


Figure: Here b=1, and (for my ease)  $\lfloor a \rfloor = 1$ , thus one grey box is cut and then stacked above on the right. In particular, (-b,d) is unchanged.

## One 2D map

The a=1 face of  $\Omega_0$  can be parametrized by (b,c) with 0 < b < 1, 0 < c < 1/(1+b); rename as  $(x,y)_0$ .

## One 2D map

- The a=1 face of  $\Omega_0$  can be parametrized by (b,c) with 0 < b < 1, 0 < c < 1/(1+b); rename as  $(x,y)_0$ .
- The points flow to the b=1-face, giving values (a',b',c',d')=(1/b,1,bc,b(1-bc)). Using the identification above, this is the point  $(a'',b'',c'',d'')=(1/b-\lfloor 1/b\rfloor,1,*,b(1-bc))$ .

## One 2D map

- The a=1 face of  $\Omega_0$  can be parametrized by (b,c) with 0 < b < 1, 0 < c < 1/(1+b); rename as  $(x,y)_0$ .
- The points flow to the b=1-face, giving values (a',b',c',d')=(1/b,1,bc,b(1-bc)). Using the identification above, this is the point  $(a'',b'',c'',d'')=(1/b-\lfloor 1/b\rfloor,1,*,b(1-bc))$ .
- The b=1-face of  $\Omega_1$  can be parametrized by (a,d) with  $0 \le a < 1, \ 0 \le d < 1/(a+1)$ . The map is then

$$(x,y)_0 \mapsto (1/x - \lfloor 1/x \rfloor, x - x^2 y)_1.$$

# Second 2D map, Theorem 2 is proven.

■ The b=1 face of  $\Omega_1$  flows to its a=1 boundary face. (Except those points with a=0.) This gives  $(x,y)_1=(a,d)-->(a',b',c',d')=(1,a^{-1},a(1-ad),ad)$ .

# Second 2D map, Theorem 2 is proven.

- The b=1 face of  $\Omega_1$  flows to its a=1 boundary face. (Except those points with a=0.) This gives  $(x,y)_1=(a,d)-->(a',b',c',d')=(1,a^{-1},a(1-ad),ad)$ .
- Identify to a = 1-face of  $\Omega_0$

$$\begin{pmatrix} 1 & 0 \\ \lfloor b' \rfloor & 1 \end{pmatrix} \begin{pmatrix} 1 & c' \\ -b' & d' \end{pmatrix} = \begin{pmatrix} 1 & c' \\ -\{b'\} & d' + \lfloor b' \rfloor c' \end{pmatrix},$$

# Second 2D map, Theorem 2 is proven.

- The b=1 face of  $\Omega_1$  flows to its a=1 boundary face. (Except those points with a=0.) This gives  $(x,y)_1=(a,d)-->(a',b',c',d')=(1,a^{-1},a(1-ad),ad)$ .
- Identify to a=1-face of  $\Omega_0$

$$\begin{pmatrix} 1 & 0 \\ \lfloor b' \rfloor & 1 \end{pmatrix} \begin{pmatrix} 1 & c' \\ -b' & d' \end{pmatrix} = \begin{pmatrix} 1 & c' \\ -\{b'\} & d' + \lfloor b' \rfloor c' \end{pmatrix},$$

• Using the (new) (b, c), the map is then

$$(x,y)_1 \mapsto (1/x - \lfloor 1/x \rfloor, x - x^2y)_0.$$

#### Theorem 3, Gauss map as factor. Repeated!

**Theorem (Arnoux's extension)** Let  $\Sigma_0 \subset \Omega_0$  be the subset where a=1, and  $\Sigma_1 \subset \Omega_1$  be the subset where b=1. Then

- (1) the geodesic flow maps the 2D boundary face  $\Sigma_0$  to a boundary face of  $\Omega_0$  that can naturally be identified with  $\Sigma_1$ ;
- (2) the geodesic flow maps  $\Sigma_1$  to a face that can in turn be identified with  $\Sigma_0$ ;
- (3) and, there are real coordinates so that these maps can be given by

$$egin{aligned} \Sigma_\epsilon &
ightarrow \Sigma_{1-\epsilon} \ (x,y) &\mapsto (1/x - \lfloor 1/x 
floor, x-x^2y). \end{aligned}$$

Lebesgue measure is invariant here. This gives a double cover of the natural extension of the standard Gauss map of regular continued fractions.

#### The natural extension.

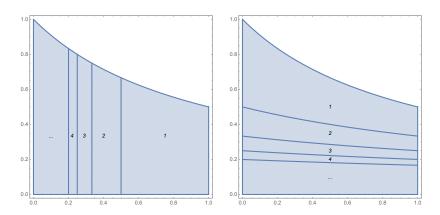


Figure: The natural extension map.

Thanks!