Factors

Let $\mathbf{X} = (X, \mathcal{M}, \mu, T)$, $\mathbf{Y} = (Y, \mathcal{A}, \nu, S)$ be two ergodic probability measure preserving systems.

We say **Y** is a *factor* of **X** if there exists $\pi : X \to Y$ so that $\mu(\pi^{-1}(A)) = \nu(A)$ for all $A \in \mathcal{A}$ and $\pi \circ T = S \circ \pi$.

Examples

- The one point system is a factor of every system.
- $(X_1 \times X_2, T_1 \times T_2, \mu_1 \otimes \mu_2)$ has (X_1, T_1, μ_1) as a factor, with factor map π_1 , projection onto the first coordinate.
 - $T_1 \circ \pi_1$ is also a factor map.
- Every system is a factor of itself.
 - Id is a factor map
 - T^k is a factor map.
- ▶ $R_{\alpha} : [0,1) \rightarrow [0,1)$ by $R(x) = x + \alpha \mod 1$ has $R_{k\alpha}$ as a factor for all $k \in \mathbb{N}$.
 - •The factor map is $x \to kx \mod 1$
 - •Because $k(x + \alpha) = kx + k\alpha$
- In fact if X is not weakly mixing than any eigenfunction is a factor map.

 \mathbf{X} is *prime* if the only factor maps of \mathbf{X} are projection to the one point system or isomorphisms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example: Let $X = \mathbb{Z}/p\mathbb{Z}$, μ be counting measure and $T = +1 \mod p$.

Objects on X related to factors of X

What about X can tell us about its factors?

$$\mathsf{Well}\,\cup_{x\in \mathbf{X}} \Big(\,\pi^{-1}(\pi x)\times\pi^{-1}(\pi x)\,\Big)\subset X\times X\,\,\mathsf{is one object}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Moreover there is a version of this for measures.

Disintegration of measures: If **Y** is a factor of **X** with factor map π as above then:

For ν a.e. $y \in Y$ there exists a probability measure μ_y (on X) so that $\mu_y(\pi^{-1}(y)) = 1$ and

$$\mu = \int_Y \mu_y d\nu(y).$$

That is $\mu(A) = \int_Y \mu_y(A) d\nu(y)$.

Example 1: $\mathbf{X} = (X_1 \times X_2, \mu_1 \otimes \mu_2, T_1 \times T_2), \pi((x_1, x_2)) = x_1.$ $(\mu_1 \otimes \mu_2)_{x_1}$ "is the copy of μ_2 supported on $\{x_1\} \times X_2$." That is, $(\mu_1 \otimes \mu_2)_{x_1}(A) = \mu_2(\{z \in X_2 : (x_1, z) \in A\}).$

Example 2: $\mathbf{X} = ([0, 1), Leb, R_{\alpha}), \ \pi(x) = kx \mod 1.$ $\mu_x = \frac{1}{k} \left(\sum_{i=0}^{k-1} \delta_{x+\frac{i}{k}} \right) \text{ where } x + \frac{i}{k} \text{ is taken mod } 1.$

Relatively independent joining

Let **Y** be a factor of **X** with factor map π and μ_y be the measures coming from the disintegration of measures as above.

Want an analogue of: $\cup_{x\in \mathbf{X}} \Big(\pi^{-1}(\pi x) \times \pi^{-1}(\pi x) \Big) \subset X \times X.$

The relatively independent joining over Y is

$$\sigma_{\pi} = \int_{Y} \mu_{y} \otimes \mu_{y} d\nu(y),$$

a measure on $X \times X$.

Example 1: $\mathbf{X} = (X_1 \times X_2, \mu_1 \otimes \mu_2, T_1 \times T_2), \ \pi((x_1, x_2)) = x_1.$ $\sigma_{\pi}(A) = \int_{X_1} \mu_2 \otimes \mu_2(\{(a, b) : (x_1, a, x_1, b) \in A\}) d\mu_1(x_1).$

Example 2: $\mathbf{X} = ([0, 1), Leb, R_{\alpha}), \ \pi(x) = 6x \mod 1.$

$$\sigma_{\pi}(A) = \int_{[0,1)} \frac{1}{6} |\{i \in \{0, ..., 5\} : (x, x + \frac{i}{6}) \in A\}| dLeb(x).$$

Properties of σ_{π}

 σ_{π} is a measure on X imes X that is

- ► T × T invariant
- and projects to μ in both coordinates.

A map with these two properties is called a *self-joining* of μ .

Other examples of self joinings:

• $\mu \times \mu$ (which is also the relatively independent joining over the map to the 1 point system).

• σ where $\sigma(A) = \mu(\{x : (x, T^k x) \in A\}).$ We denote this measure $\Delta_{T^k}(\mu)$

Rudolph's criterion

X has *minimal self-joinings* if any ergodic self-joining is either the product measure or $\Delta_{T^k}(\mu)$ for some k.

Theorem

(Rudolph) Weakly mixing systems with minimal self-joinings are prime.

Veech's criterion

X has property S if any ergodic self-joining is either the product measure $\mu \times \mu$ or is 1-1 on almost every fiber. Equivalently, if C(T) denotes the centralizer of T. That is, the set of $F : X \to X$ so that F preserves μ and commutes with T. If σ is an ergodic self-joining of **X** other than $\mu \times \mu$ then there exists $F \in C(T)$ so that $\sigma(A) = \mu(\{x : (x, Fx) \in A\})$. (Disintegration of measures applied to projection onto the first coordinate.) We denote this measure,

 $\Delta_F(\mu).$

Theorem

(Veech) If X has property S than any non-trivial factor comes from modding out by a compact subgroup of the centralizer.

An example

If $\mathbf{X} = ([0, 1), Leb, R_{\alpha})$ with α irrational, then $C(R_{\alpha}) = S^1$. The compact subgroups are given by the set of rotations by the k^{th} roots of unity.

Modding out by one these is identifying the fibers of the times $k \mod 1$ map.

Ergodic decomposition

Let $J(\mathbf{X})$ be the set of self-joinings of \mathbf{X} .

- It is convex.
- It is weak-* compact.
- It is the convex hull of its extreme points, J^e(X), the ergodic self-joinings of X.

Ergodic decomposition: Let **Y** be a factor of **X** with factor map π . Let σ_{π} be the measure as before. There exists a unique Borel probability measure on $J^{e}(\mathbf{X})$, \mathbb{P} , so that

$$\sigma_{\pi}(A) = \int_{J^{e}(\mathbf{X})} \tau(A) d\mathbb{P}(\tau)$$
 (*)

for all measurable $A \subset X \times X$.

More generally

This is a special example of a more general theorem. Let $\mathbf{X}' = (X', \mathcal{B}', \mu', T')$ be a (not necessarily ergodic) probability measure preserving system. Then there exists a unique measure \mathbb{P}' giving full measure to the T' ergodic and invariant probability measures so that

$$\mu' = \int au d\mathbb{P}'(au).$$

Our previous theorem is the case $\mathbf{X}' = (X \times X, \sigma_{\pi}, T \times T)$. **Example:** Let $T' : [0,1) \times [0,1) \rightarrow [0,1) \times [0,1)$ by $T'(x,y) = (x, R_x(y))$ and $\mu' = Leb^2$. Observe that μ is not ergodic, but for almost every x, $Leb_x(A) = Leb(\{y : (x, y) \in A\})$ is.

We have $\mu' = \int Leb_x dLeb(x)$.

Back to the relatively independent joining over a factor

Recall, there exists a unique Borel probability measure on $J^e(\mathbf{X})$, \mathbb{P} , so that

$$\sigma_{\pi}(A) = \int_{J^{e}(\mathbf{X})} \tau(A) d\mathbb{P}(\tau)$$
 (*)

for all measurable $A \subset X \times X$.

Example: If $\mathbf{X} = ([0, 1), Leb, R_{\alpha})$ with α irrational, π is times k mod 1.

Let
$$R_{rac{j}{k}}(x)=x+rac{j}{k} \mod 1.$$

 $\sigma_{\pi}=\sum_{i=0}^{k-1}\Delta_{R_{rac{j}{k}}}(\mu)$

Note that $\Delta_{R_{\beta}}(\mu)$ is $R_{\alpha} \times R_{\alpha}$ ergodic for all β .

Exercise: If π is not the map to the one point system, $\mathbb{P}(\mu \times \mu) = 0.$ • That is, $\mathbb{P}(\bigcup_{F \in C(T)} \Delta_F) = 1.$

So we get a measure $\hat{\mathbb{P}}$ on C(T).

To complete the theorem, it suffices to show there exists $K \subset C(T)$ so that $\hat{\mathbb{P}}(K) = 1$ and $F_*\hat{\mathbb{P}} = \hat{\mathbb{P}}$ for all $F \in K$.

Indeed, we have a topological group, K, with a probability measure on it that it is invariant under the group action. So, K is compact. Indeed, because C(T) and thus K is separable, $\hat{P}(U) > 0$ for every non-empty open set U. If K were not compact, there would be a non-empty neighborhood of Id, V and $k_1, ... \in K$ so $k_i V \cap k_j V = \emptyset$ for all $i \neq j$. As $\hat{P}(k_i V) = \hat{P}(V) > 0$ this would contradict that \hat{P} is a probability measure.

Preserving \hat{P}

If $\pi \circ F = \pi$ almost everywhere then $(id \times F)_* \mathbb{P} = \mathbb{P}$. Indeed,

$$\int_{J^{e}(\mathbf{X})} (id \times F)_{*} \tau d\mathbb{P}(\tau) = (id \times F)_{*} \sigma_{\pi}$$
$$= \int_{X} (id \times F)_{*} (\mu_{\pi(x)} \otimes \mu_{\pi(x)}) d\pi_{*} \mu(x)$$
$$= \sigma_{\pi}$$

Since \mathbb{P} is the unique such measure, $(id \times F)_*\mathbb{P} = \mathbb{P}$. So F preserves \hat{P} . Generalizing $\pi \circ F = \pi$ to $J(\mathbf{X})$

Let,

$$I(\pi) = \{\tau \in J(\mathsf{X}) : (\pi \times \pi)_* \tau = (\pi \times \pi)_* \Delta_{Id}(\mu) = \Delta_{Id}(\nu) \}.$$

Properties: $I(\pi)$ is

- Convex
- Compact
- Contains σ_{π} .
- Extremal

Because $\sigma_{\pi} \in I(\pi)$, and $I(\pi)$ is extremal, convex and compact \mathbb{P} is supported on $I(\pi) \cap J^{e}(\mathbf{X})$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $I(\pi) \cap J^e(\mathbf{X}) = \{\Delta_F(\mu) : F \in C(T) \text{ and } \pi \circ F = \pi\}.$ So $\{F \in C(T) : \pi \circ F = F\}$ preserves $\hat{\mathbb{P}}$ and has full $\hat{\mathbb{P}}$ measure.

References

Willam Veech. A criterion for a process to be prime. Monatsh. Math. 94 (1982), no. 4, 335–341.

- Daniel Rudolph. An example of a measure preserving map with minimal self-joinings, and applications. J. Analyse Math. 35 (1979), 97–122
- Hillel Furstenberg. *Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation.* Math. Systems Theory 1 (1967) 1–49
- Disintegration of measures and ergodic decomposition: Michael Hochman's notes
- $http://math.huji.ac.il/\sim mhochman/courses/ergodic-theory-2012/notes.final.pdf$
- Haar measure: Ryan Vinroot's notes
- http://www.math.wm.edu/~vinroot/PadicGroups/haar.pdf More on joinings: Theirry de la Rue
- https://hal.archives-ouvertes.fr/hal-02469083/document