Factors

Let $\mathbf{X}=(X, \mathcal{M}, \mu, T), \mathbf{Y}=(Y, \mathcal{A}, \nu, S)$ be two ergodic probability measure preserving systems.

We say \mathbf{Y} is a factor of \mathbf{X} if there exists $\pi: X \rightarrow Y$ so that $\mu\left(\pi^{-1}(A)\right)=\nu(A)$ for all $A \in \mathcal{A}$ and $\pi \circ T=S \circ \pi$.

$$
\begin{array}{ccc}
X \xrightarrow{T} & X \\
\downarrow & & \downarrow \pi \\
\downarrow & & \\
Y & \\
Y & Y
\end{array}
$$

Examples

- The one point system is a factor of every system.
- $\left(X_{1} \times X_{2}, T_{1} \times T_{2}, \mu_{1} \otimes \mu_{2}\right)$ has $\left(X_{1}, T_{1}, \mu_{1}\right)$ as a factor, with factor map π_{1}, projection onto the first coordinate.
- $T_{1} \circ \pi_{1}$ is also a factor map.
- Every system is a factor of itself.
- Id is a factor map
- T^{k} is a factor map.
- $R_{\alpha}:[0,1) \rightarrow[0,1)$ by $R(x)=x+\alpha \bmod 1$ has $R_{k \alpha}$ as a factor for all $k \in \mathbb{N}$.
-The factor map is $x \rightarrow k x$ mod 1
- Because $k(x+\alpha)=k x+k \alpha$
- In fact if \mathbf{X} is not weakly mixing than any eigenfunction is a factor map.

Prime

\mathbf{X} is prime if the only factor maps of \mathbf{X} are projection to the one point system or isomorphisms.

Example: Let $X=\mathbb{Z} / p \mathbb{Z}, \mu$ be counting measure and $T=+1 \bmod \mathrm{p}$.

Objects on \mathbf{X} related to factors of \mathbf{X}

What about \mathbf{X} can tell us about its factors?
Well $\cup_{x \in \mathbf{X}}\left(\pi^{-1}(\pi x) \times \pi^{-1}(\pi x)\right) \subset X \times X$ is one object.
Moreover there is a version of this for measures.

Disintegration of measures: If \mathbf{Y} is a factor of \mathbf{X} with factor map π as above then:
For ν a.e. $y \in Y$ there exists a probability measure $\mu_{y}($ on X) so that $\mu_{y}\left(\pi^{-1}(y)\right)=1$ and

$$
\mu=\int_{Y} \mu_{y} d \nu(y)
$$

That is $\mu(A)=\int_{Y} \mu_{y}(A) d \nu(y)$.
Example 1: $\mathbf{X}=\left(X_{1} \times X_{2}, \mu_{1} \otimes \mu_{2}, T_{1} \times T_{2}\right), \pi\left(\left(x_{1}, x_{2}\right)\right)=x_{1}$. $\left(\mu_{1} \otimes \mu_{2}\right)_{x_{1}}$ "is the copy of μ_{2} supported on $\left\{x_{1}\right\} \times X_{2}$."
That is, $\left(\mu_{1} \otimes \mu_{2}\right)_{x_{1}}(A)=\mu_{2}\left(\left\{z \in X_{2}:\left(x_{1}, z\right) \in A\right\}\right)$.

Example 2:

$\mathbf{X}=\left([0,1), L e b, R_{\alpha}\right), \pi(x)=k x \bmod 1$.
$\mu_{x}=\frac{1}{k}\left(\sum_{i=0}^{k-1} \delta_{x+\frac{i}{k}}\right)$ where $x+\frac{i}{k}$ is taken $\bmod 1$.

Relatively independent joining

Let \mathbf{Y} be a factor of \mathbf{X} with factor map π and μ_{y} be the measures coming from the disintegration of measures as above.

Want an analogue of: $\cup_{x \in \mathbf{X}}\left(\pi^{-1}(\pi x) \times \pi^{-1}(\pi x)\right) \subset X \times X$.
The relatively independent joining over \mathbf{Y} is

$$
\sigma_{\pi}=\int_{Y} \mu_{y} \otimes \mu_{y} d \nu(y)
$$

a measure on $X \times X$.
Example 1: $\mathbf{X}=\left(X_{1} \times X_{2}, \mu_{1} \otimes \mu_{2}, T_{1} \times T_{2}\right), \pi\left(\left(x_{1}, x_{2}\right)\right)=x_{1}$.

$$
\sigma_{\pi}(A)=\int_{X_{1}} \mu_{2} \otimes \mu_{2}\left(\left\{(a, b):\left(x_{1}, a, x_{1}, b\right) \in A\right\}\right) d \mu_{1}\left(x_{1}\right)
$$

Example 2: $\mathbf{X}=\left([0,1), L e b, R_{\alpha}\right), \pi(x)=6 x \bmod 1$.

$$
\sigma_{\pi}(A)=\int_{[0,1)} \frac{1}{6}\left|\left\{i \in\{0, \ldots, 5\}:\left(x, x+\frac{i}{6}\right) \in A\right\}\right| d \operatorname{Leb}(x) .
$$

Properties of σ_{π}

σ_{π} is a measure on $X \times X$ that is

- $T \times T$ invariant
- and projects to μ in both coordinates.

A map with these two properties is called a self-joining of μ.
Other examples of self joinings:
$\bullet \mu \times \mu$ (which is also the relatively independent joining over the map to the 1 point system).

- σ where $\sigma(A)=\mu\left(\left\{x:\left(x, T^{k} x\right) \in A\right\}\right)$.

We denote this measure $\Delta_{T^{k}}(\mu)$

Rudolph's criterion

\mathbf{X} has minimal self-joinings if any ergodic self-joining is either the product measure or $\Delta_{T^{k}}(\mu)$ for some k.

Theorem
(Rudolph) Weakly mixing systems with minimal self-joinings are prime.

Veech's criterion

\mathbf{X} has property S if any ergodic self-joining is either the product measure $\mu \times \mu$ or is 1-1 on almost every fiber.
Equivalently, if $C(T)$ denotes the centralizer of T. That is, the set of $F: X \rightarrow X$ so that F preserves μ and commutes with T. If σ is an ergodic self-joining of \mathbf{X} other than $\mu \times \mu$ then there exists $F \in C(T)$ so that $\sigma(A)=\mu(\{x:(x, F x) \in A\})$. (Disintegration of measures applied to projection onto the first coordinate.)
We denote this measure,

$$
\Delta_{F}(\mu)
$$

Theorem
(Veech) If \mathbf{X} has property S than any non-trivial factor comes from modding out by a compact subgroup of the centralizer.

An example

If $\mathbf{X}=\left([0,1), L e b, R_{\alpha}\right)$ with α irrational, then $C\left(R_{\alpha}\right)=S^{1}$.
The compact subgroups are given by the set of rotations by the $k^{\text {th }}$ roots of unity.
Modding out by one these is identifying the fibers of the times k mod 1 map.

Ergodic decomposition

Let $J(\mathbf{X})$ be the set of self-joinings of \mathbf{X}.

- It is convex.
- It is weak-* compact.
- It is the convex hull of its extreme points, $J^{e}(\mathbf{X})$, the ergodic self-joinings of \mathbf{X}.
Ergodic decomposition: Let \mathbf{Y} be a factor of \mathbf{X} with factor map π. Let σ_{π} be the measure as before. There exists a unique Borel probability measure on $J^{e}(\mathbf{X}), \mathbb{P}$, so that

$$
\begin{equation*}
\sigma_{\pi}(A)=\int_{J^{e}(\mathbf{X})} \tau(A) d \mathbb{P}(\tau) \tag{*}
\end{equation*}
$$

for all measurable $A \subset X \times X$.

More generally

This is a special example of a more general theorem.
Let $\mathbf{X}^{\prime}=\left(X^{\prime}, \mathcal{B}^{\prime}, \mu^{\prime}, T^{\prime}\right)$ be a (not necessarily ergodic) probability measure preserving system. Then there exists a unique measure \mathbb{P}^{\prime} giving full measure to the T^{\prime} ergodic and invariant probability measures so that

$$
\mu^{\prime}=\int \tau d \mathbb{P}^{\prime}(\tau)
$$

Our previous theorem is the case $\mathbf{X}^{\prime}=\left(X \times X, \sigma_{\pi}, T \times T\right)$. Example: Let $T^{\prime}:[0,1) \times[0,1) \rightarrow[0,1) \times[0,1)$ by $T^{\prime}(x, y)=\left(x, R_{x}(y)\right)$ and $\mu^{\prime}=L e b^{2}$. Observe that μ is not ergodic, but for almost every $x, \operatorname{Leb}_{x}(A)=\operatorname{Leb}(\{y:(x, y) \in A\})$ is.
We have $\mu^{\prime}=\int \operatorname{Leb} b_{x} d \operatorname{Leb}(x)$.

Back to the relatively independent joining over a factor

Recall, there exists a unique Borel probability measure on $J^{e}(\mathbf{X})$,
\mathbb{P}, so that

$$
\begin{equation*}
\sigma_{\pi}(A)=\int_{J^{e}(\mathbf{X})} \tau(A) d \mathbb{P}(\tau) \tag{}
\end{equation*}
$$

for all measurable $A \subset X \times X$.
Example: If $\mathbf{X}=\left([0,1)\right.$, Leb, $\left.R_{\alpha}\right)$ with α irrational, π is times k $\bmod 1$.

Let $R_{\frac{j}{k}}(x)=x+\frac{j}{k} \bmod 1$.

$$
\sigma_{\pi}=\sum_{i=0}^{k-1} \Delta_{R_{\frac{i}{k}}}(\mu)
$$

Note that $\Delta_{R_{\beta}}(\mu)$ is $R_{\alpha} \times R_{\alpha}$ ergodic for all β.

Exercise: If π is not the map to the one point system, $\mathbb{P}(\mu \times \mu)=0$.

- That is, $\mathbb{P}\left(\cup_{F \in C(T)} \Delta_{F}\right)=1$.

So we get a measure $\hat{\mathbb{P}}$ on $C(T)$.
To complete the theorem, it suffices to show there exists $K \subset C(T)$ so that $\hat{\mathbb{P}}(K)=1$ and $F_{*} \hat{\mathbb{P}}=\hat{\mathbb{P}}$ for all $F \in K$.

Indeed, we have a topological group, K, with a probability measure on it that it is invariant under the group action. So, K is compact. Indeed, because $C(T)$ and thus K is separable, $\hat{P}(U)>0$ for every non-empty open set U. If K were not compact, there would be a non-empty neighborhood of $I d, V$ and $k_{1}, \ldots \in K$ so $k_{i} V \cap k_{j} V=\emptyset$ for all $i \neq j$. As $\hat{P}\left(k_{i} V\right)=\hat{P}(V)>0$ this would contradict that \hat{P} is a probability measure.

Preserving \hat{P}

If $\pi \circ F=\pi$ almost everywhere then $(i d \times F)_{*} \mathbb{P}=\mathbb{P}$. Indeed,

$$
\begin{array}{rlr}
\int_{J^{e}(\mathbf{X})}(i d \times F)_{*} \tau d \mathbb{P}(\tau) & = & (i d \times F)_{*} \sigma_{\pi} \\
& =\int_{X}(i d \times F)_{*}\left(\mu_{\pi(x)} \otimes \mu_{\pi(x)}\right) d \pi_{*} \mu(x) \\
& =\quad \sigma_{\pi}
\end{array}
$$

Since \mathbb{P} is the unique such measure, $(i d \times F)_{*} \mathbb{P}=\mathbb{P}$.
So F preserves \hat{P}.

Generalizing $\pi \circ F=\pi$ to $J(\mathbf{X})$

Let,

$$
I(\pi)=\left\{\tau \in J(\mathbf{X}):(\pi \times \pi)_{*} \tau=(\pi \times \pi)_{*} \Delta_{l d}(\mu)=\Delta_{l d}(\nu)\right\}
$$

Properties: $I(\pi)$ is

- Convex
- Compact
- Contains σ_{π}.
- Extremal

Because $\sigma_{\pi} \in I(\pi)$, and $I(\pi)$ is extremal, convex and compact \mathbb{P} is supported on $I(\pi) \cap J^{e}(\mathbf{X})$.
$I(\pi) \cap J^{e}(\mathbf{X})=\left\{\Delta_{F}(\mu): F \in C(T)\right.$ and $\left.\pi \circ F=\pi\right\}$.
So $\{F \in C(T): \pi \circ F=F\}$ preserves $\hat{\mathbb{P}}$ and has full $\hat{\mathbb{P}}$ measure.

References

Willam Veech. A criterion for a process to be prime. Monatsh.
Math. 94 (1982), no. 4, 335-341.
Daniel Rudolph. An example of a measure preserving map with minimal self-joinings, and applications. J. Analyse Math. 35 (1979), 97-122

Hillel Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967) 1-49
Disintegration of measures and ergodic decomposition: Michael Hochman's notes
http://math.huji.ac.il/~mhochman/courses/ergodic-theory2012/notes.final.pdf
Haar measure: Ryan Vinroot's notes
http://www.math.wm.edu/~vinroot/PadicGroups/haar.pdf More on joinings: Theirry de la Rue https://hal.archives-ouvertes.fr/hal-02469083/document

