Let $\mathcal A$ denote a finite set. $\mathcal A^{\mathbb N}$ with product topology is a compact metric space.

$$d(\mathbf{x},\mathbf{y}) = 2^{-\inf\{i:x_i \neq y_i\}}$$

gives the topology.

The left shift $L : \mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ by $L(\mathbf{x})_i = x_{i+1}$ is a continuous map.

We consider $X \subset \mathcal{A}^{\mathbb{N}}$ closed and so that X = L(X). By the Krylov-Bogolyubov Theorem for any such X there is an L invariant Borel probability measure.

Examples:

X = A^N.
X = {x ∈ {0,1}^N : if x_i = 1 then x_{i+1} ≠ 1}.
X = {(0,0,...)}
Given x ∈ A^N, let Y = {Lⁱx}[∞]_{i=0} and X = ∩[∞]_{i=1}LⁱY, the ω-limit set of x.

Let

 $B_n(X) = \{(a_1,...,a_n) \in \mathcal{A}^n : \exists \mathbf{x} \in X \text{ with } x_i = a_i \text{ for all } 1 \leq i \leq n\}.$

An important function is $n \to |B_n(X)|$.

- $\lim_{n\to\infty} \frac{1}{n} \log(|B_n(X)|)$ exists and is the topological entropy of X.
- If there exists C so that |B_n(X)| ≤ Cn for all n we say X has linear block growth.

Theorem

(Hedlund-Morse) If there exists n so that $|B_n(X)| = |B_{n+1}(X)|$ then $|B_{n+k}| = |B_n|$ for all $k \ge 0$. Moreover every element of X is (eventually) periodic.

Proof.

- For each (a₁,..., a_n) ∈ B_n(X) there exists unique u ∈ A so that (a₁,..., a_n, u) ∈ B_{n+1}(X).
- Applying this to (a₂,..., a_n, u) there exists a unique v so that (a₂,..., a_n, u, v) ∈ B_{n+1} and so (a₁,..., a_n, u, v) is the unique element of B_{n+2}(X) starting a₁,..., a_n.
- Iterating this, for all k ≥ 0 there exists a unique element of B_{n+k} starting with a₁,..., a_n.

The bound from the Hedlund-Morse Theorem is optimal. There exists (X, L), a shift dynamical system so that $|B_n(X)| = n + 1$ for all n.

Let
$$0 < \alpha < 1$$
 so that $\alpha \notin \mathbb{Q}$ and $R : [0,1) \rightarrow [0,1)$ by $R(x) = x + \alpha - \lfloor x + \alpha \rfloor$. Let $\tau : [0,1) \rightarrow \{0,1\}$ by

$$\tau(x) = \begin{cases} 0 & \text{if } x \in [0, \alpha) \\ 1 & \text{else.} \end{cases}$$

Let $\mathfrak{c} : [0,1) \to \{0,1\}^{\mathbb{N}}$ by $\mathfrak{c}(x)_i = \tau(R^i x)$. $X = \overline{c([0,1))}$ satisfies $|B_n(X)| = n+1$ for all n. 1. Show $\mathfrak{c}([0,1))$ is not closed in $\{0,1\}^{\mathbb{N}}$.

- 2. Describe $\overline{c([0,1))} \setminus c([0,1))$.
- 3. Show $|B_n(X)| = n + 1$.

The following notions may be helpful for the exercises:

A word $(a_1, ..., a_n) \in B_n(x)$ is called *right special* if there exists (at least) two different symbols $u, v \in A$ so that $(a_1, ..., a_n, u), (a_1, ..., a_n, v) \in B_{n+1}(X)$.

A word $(a_1, ..., a_n) \in B_n(x)$ is called *left special* if there exists (at least) two different symbols $u, v \in A$ so that $(u, a_1, ..., a_n), (v, a_1, ..., a_n) \in B_{n+1}(X)$.

We say a word is *special* if it is either left or right special.

Further reading: **Substitutions in Dynamics, Arithmetics and Combinatorics** by Pytheas Fogg. -See: https://www.irif.fr/~berthe/Fogg.html

An introduction to symbolic dynamics and coding by Douglas Lind and Brian Marcus.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ