NO IET IS MIXING

from

"IET and some special flows are not mixing" A. Katok

IET: interval exchange transf.

$I = [0, b]$ and $f : [0, b] \to [0, b]$

we want f to be 1-1 and continuous except at finitely many points
f preserves the Lebesgue measure

Formally: $n > 0 \in \mathbb{N}$

$\Delta = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ s.t. $\sum \lambda_i = b-a$

$T_{\Delta, \sigma} = T : [0, b]$
for $1 \leq i \leq n$ \hspace{1em} a_i = \sum_{1 \leq j \leq i} \lambda_j^i

b_i = \sum_{1 \leq j \leq \sigma(i)} \lambda_{\sigma^{-1}(j)}^i

for $x \in \mathcal{I}$ we define

$\tau(x) = x + b_i - a_i$ for $x \in \left[a_i, a_i + \lambda_i \right]

\textbf{def:} If m is the minimal positive integer such $\mathcal{I}(T)$ has a representation as above we shall say that f is a IET of m intervals.

& n
\[f : [0, 1] \to \lambda = (1/2, 1/2) \]
\[\sigma = (12) \]

\[\begin{array}{c}
\circlearrowleft \\
0 \quad 1/2 \quad 1
\end{array} \]

Remark

In principle an ISM there may be other invariant measures different from the Lebesgue one

\((X, \mu, f)\) dynamical system

Define (mixing) let \((X, \mathcal{B}, \mu, T)\) be a dynamical system. Then T is mixing if \(\forall A, B \in \mathcal{B}\) we have
\[\lim_{n \to +\infty} \mu(T^n A \cap B) = \mu(A) \mu(B) \]

Theorem (A. Keleti)

\[f: \mathbb{R} \to \mathbb{R}^2 \] is a TET

\[\mu \text{ is any Borel measure on } \mathbb{R} \]

which is \(f \)-invariant.

\[f \text{ is not mixing} \]

Basic idea: if \(f \) were mixing

Then for \(A = B \) one would have
\[
\lim_{n \to \infty} \mu(f^{-n}A \cap A) = \mu(A)^2
\]

The idea becomes to find a sequence \(f^{-n} \) such that

\[
\mu(A \cap f^{-n}A) \to \mu(A)^2
\]

In order to prove this, then we need 2 lemmas:

Lemma 1: If \(\mathcal{G} \) is an ITET of \(n \) intervals and \(\mu \)

is a non-atomic Borel measure inv. under \(f \),

then there exist an ITET of \(\mathbb{R} \) on an interval \(g : [0, 1] \subset \mathbb{R} \).
\[S([0, 1], \lambda) \sim (\Sigma, \mu) \]

There exists a bijection between them up to subsets of measure 0.

R is the "isomorphism."

\[R: I \rightarrow [0, 1] \text{ and this can be taken to be } \Psi \]

Shelah:

\[R: [0, b] = I \rightarrow [0, 1] \]

\[y \mapsto \mu([0, y]) \]

Since \(\mu \) is not atomic, \(R \) is continuous and surjective. \(\Psi \)

Generally this is not 1-1.
 \[R_y = \lambda \]

\[f \quad \xrightarrow{\quad} \quad I \]

\[R \downarrow \quad C^0 \quad \downarrow \quad R \]

\[\mathbb{I}^0 \rightarrow \mathbb{I}^0 \]

\[x \quad \mapsto \quad y \]

\[g(x) = R(f(y)) \quad \text{as } R_y \]

Some checks imply that \(g \) is

\[\text{an IET} \]

\[\Delta = I \quad \text{and let } f_g \text{ be the} \]

\[\text{Lemma 3} \]

\[f: I^D \text{ is an IET of an IET.} \]
induced SET.

\[y \in \Delta \Rightarrow \exists t_{\text{first return}} \]

\[f^{-1} \circ t_{\text{first return}} \circ f \in \Delta \text{ for } f^{-1} \circ t_{\text{first return}} \circ f \in \Delta \]

The time of first return to \(\Delta \).

\(f^{-1} \) is an SET of at most \(m+2 \) intervals. Moreover

\[\Delta = \Delta_1 \cup ... \cup \Delta_s \]

\[r \leq s \leq m+2 \]

Proof of Theorem 1

- We consider ergodic measures

- Lemma 1 \(\Rightarrow \) it is sufficient to prove the Theorem
for A on $[0,\infty)$

Fix $\Delta \subseteq \mathcal{I}$

Lemma 2 \implies \mathcal{I} = \bigcup_{i=1}^{k_0} \bigcup_{i} \Delta_i$

where τ_i is the time of first return to Δ_i

for each Δ_i, we have f_{Δ_i}

the induced IET on Δ_i

and we apply Lemma 2 once more to Δ_i

$\Delta_i = \bigcup_{j=1}^{s_i} \Delta_{ij} = \bigcup_{j=1}^{s_i} \bigcup_{i} \Delta_{ij}$

first time of return to Δ_{ij}
\[I = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} \Delta_{ij} \]

These are all disjoint intervals.

Note: \(\sum_{i} \Delta_i = \Delta_n \)

\[\text{Proof:} \quad f_{ij}^n(\Delta_{ij}) \subset \Delta_n \quad (4) \]

\[f_{ij}^n(\bigcup_{j=1}^{m} \Delta_{ij}) = \bigcup_{j=1}^{m} \left(f_{ij}^n(\Delta_{ij}) \right) \subset \Delta_n \]

\[\Rightarrow \Delta_n = \bigcup_{j=1}^{m} \Delta_{ij} \]

\[(4) \Rightarrow \Delta_n \subset \bigcup_{j=1}^{m} f_{ij}^n \Delta_{ij} \]
Recall

\[I = \bigcup_{i=1}^{s} \bigcup_{j=1}^{t} f^{n} \Delta_{ij} \]

This is called "partition of \(\mathbb{E}^{n} \) \(\mathbb{E}_{\Delta} \). We say the AOTI is measurable with \(\mathbb{E}_{\Delta} \) if \(\Delta \)

is union of elements in \(\mathbb{E}_{\Delta} \)

Let \(A \) measurable with \(\mathbb{E}_{\Delta} \)

\[A \subset \bigcup_{i=1}^{s} \bigcup_{j=1}^{t} f^{n} \Delta_{ij} \]

\(f \) is measure for each

\[s \leq \text{mtz}, t \leq \text{mtz} \]
\[\mu(A \cap f^i A) = \sum_{j} \mu(A \cap f^j A) \geq \frac{1}{(m+2)^2} \mu(A) \]

\[\text{Fix } A \text{ and } \mu(A) < \frac{1}{10(m+2)^2} \]

\[\text{Fix } N > N \]

Choose \(\Delta \subset I \) so that
\[\exists A_\Delta \text{ measurable with } \xi_A \]

\[\mu(A_\Delta A_\Delta) < \frac{1}{10} \mu(A)^2 \]

\[t_i > N \quad \forall i \quad \text{this holds for any sub-interval of } \Delta \]

Pick \(A_\Delta \) for some \(t_j > t_i > N \)
\[\mu(A \cap f^{-1}(A)) \geq \mu(A_\delta \cap f^{-1}(A_\delta)) - 2\mu(A_\delta A_\delta) \]

\[\geq \frac{1}{(m+2)^2} \mu(A_\delta) - \frac{1}{5} \mu(A)^2 \]

\[\text{Rmk} \]

\[\mu(A) > \frac{8}{10} \mu(A) \]

\[\mu(A) < \frac{1}{10(m+2)^2} \]

\[\geq \left(\frac{8}{10}\right)^2 \frac{1}{(m+2)^2} \mu(A) - \frac{1}{5} \mu(A)^2 \]

\[\geq \mu(A)^2 \left(\frac{10 - \frac{8^2}{10}}{10^2 - \frac{5}{5}}\right) \]
\[> 2 \]
\[> 2 \mu(A)^2 \]
\[\implies f \text{ is not mixing.} \]

\[f: S \to \text{IET} \]

\[h: \mathbb{R} \to \mathbb{R}^+ \text{ roof function} \]

3. determine a "vertical" flow
\[\{ f_t \} \text{ on } S^h = \{ (x, t) \in I \times \mathbb{R} \mid 0 \leq t \leq h(x) \} \]
If the time of return to \(S \) is \(t = t_{1-} \) and \(h_{1} = \sum_{k=0}^{\infty} h(f^{k}(x)) \), then \(h_{1} \) is bounded below by some finite Borel measure on \(T \). Determine a measure \(\nu = \mu \times \lambda \) on \(T_{h} \).

\[h \in C([0,1]) \]

\[\nu(h) = \sup P \sum_{0 \leq i \leq m_{P}} |h(x_{i+1}) - h(x_{i})| \]

where \(P = \{ P = (x_{0}, \ldots, x_{m_{P}}) \} \).
\[0 \leq x_0 < x_1 < \ldots < x_n = b \]

\[h \in BV([a,b]) \quad \text{if} \quad V(h) < \infty \]

Lauded
Variation

Thus (A. Koch)

\[f \text{ is } \text{FET} \]

\[h \in BV(h) \quad \text{v.e. Borel measure} \]

inv. wrt \(h \) \(\mathfrak{H} \) \{ "rectified flow" \}

Then \(\mathfrak{H} \) is not mixing.