Rigidity of Geodesic Planes in Hyperbolic Manifolds

Osama Khalil

University of Utah

May 5, 2020

Main Theorem

- \circ Γ < G a discrete cocompact subgroup.

Theorem (Ratner-Shah)

Every orbit of H on G/Γ is either closed or dense.

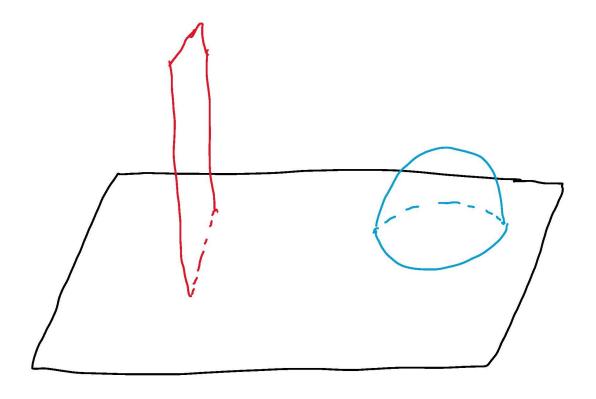
Geometry

- K = PU(2) maximal compact in $G, K \setminus G \cong \mathbb{H}^3$.
- $G = \operatorname{Isom}^+(\mathbb{H}^3)$.
- $\bullet \ \partial \mathbb{H}^3 \cong \mathbb{S}^2 \cong \mathbb{C} \cup \{\infty\} =: \hat{\mathbb{C}}.$
- $G \curvearrowright \partial \mathbb{H}^3$ by Mobiüs transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}.$$

Geometry

• $K \backslash Hg \longleftrightarrow$ the copy of \mathbb{H}^2 inside \mathbb{H}^3 whose boundary is $g \cdot \hat{\mathbb{R}} \subset \hat{\mathbb{C}}$.



Osama Khalil Rigidity of Geodesic Planes May 5, 2020 4 / 23

Geomtric Reformulation

Theorem

Suppose P is a copy of \mathbb{H}^2 inside \mathbb{H}^3 . Let $\pi : \mathbb{H}^3 \to \mathbb{H}^3/\Gamma$ be the quotient map. Then, $\pi(P)$ is either closed or dense.

Osama Khalil

Rigidity of Geodesic Planes

Important 1-parameter subgroups

$$A = \left\{ g_t = egin{pmatrix} e^{t/2} & 0 \ 0 & e^{-t/2} \end{pmatrix} : t \in \mathbb{R}
ight\}$$

•

$$U = \left\{ u_s = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} : s \in \mathbb{R} \right\}, \qquad V = \left\{ v_s = u_{s\sqrt{-1}} : s \in \mathbb{R} \right\}.$$

- \bullet N = UV.
- $\bullet g_t u_s v_r g_{-t} = u_{e^t s} v_{e^t r}.$

P acts minimally

Lemma

Every orbit of the upper triangular group AN is dense.

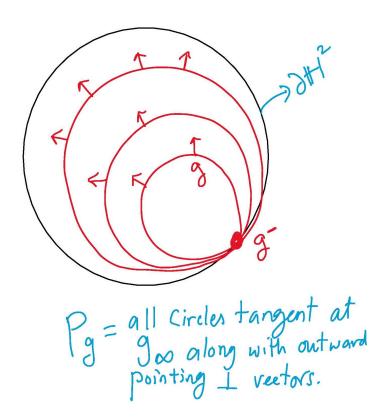
• Since *H* contains *AU*, it remains to show that the closure of a non-closed orbit contains a *V* orbit.

Osama Khalil

Rigidity of Geodesic Planes

P acts minimally - a picture

• Every Γ orbit on the boundary is dense + picture below.



Osama Khalil

Rigidity of Geodesic Planes

Producing additional invariance

- Let $x \in G/\Gamma$ and let $X = \overline{Hx}$.
- We can find $x_n \in X$ converging to x transversely; i.e.

 - $2 g_n \to e.$
- Let's look at what happens to the unipotent orbits Ux_n and Ux (both contained in X, since $U \subset H$).

Principle

Unipotent orbits diverge primarily along the centralizer of the unipotent flow.

Polynomial Divergence

$$u_s x_n = (u_s g_n u_s^{-1}) \cdot u_s x.$$

- The deviation of $u_s x_n$ from $u_s x$ is measured by $u_s g_n u_s^{-1}$.
- From topology to linear algebra:

$$\underbrace{\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}}_{u_s} \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{g_n} \underbrace{\begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix}}_{u_s^{-1}} = \begin{pmatrix} a + sc & b + (d - a)s - cs^2 \\ c & d - sc \end{pmatrix}$$

Polynomial divergence \Longrightarrow additional invariance

$$\underbrace{\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}}_{u_s} \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{g_n} \underbrace{\begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix}}_{u_s^{-1}} = \begin{pmatrix} a + sc & b + (d - a)s - cs^2 \\ c & d - sc \end{pmatrix}$$

$$p(s) = b + (d - a)s - cs^2.$$

- Remember: $g_n \notin H \Longrightarrow \operatorname{Im}(p(s)) \not\equiv 0$.
- Remember $g_n \to e$ so $a, d \to 1$ and $b, c \to 0$.
- p is a polynomial \Longrightarrow one can pick s so that a + sc, d sc, $\operatorname{Im}(p(s)) \approx 1$.

Producing an orbit of *V*

- Taking suitable limits helps produce $y \in X$ and $v \in V \{e\}$ so that $yv \in X$.
- To produce a whole orbit of V, we need the idea of minimal sets:

Definition

Suppose F is a group acting on a metric space X. Then, $Y \subseteq X$ is an F-minimal set if Y is closed, F-invariant and every F-orbit in Y is dense in Y.

Minimal sets exist by Zorn's lemma and compactness.

Proof - reductions

- $X = \overline{Hx}$ is not a closed orbit. $Y \subset X$ is H-minimal and $Z \subset Y$ is U-minimal.
- Fix $z \in Z$ and a small neighborhood Ω of e in G.
- If $\Omega \cdot z \cap Y \subseteq Hz$, then Hz is open in Y (by homogeneity).
- So $Y \setminus Hz$ is closed and H-invariant. But, Y is H-minimal!
- There is $g \in \Omega$, $g \notin H$: $gz \in Y$.
- $\operatorname{Lie}(G) = \operatorname{Lie}(H) \oplus \sqrt{-1}\operatorname{Lie}(H)$.
- If g is small, then $g = h \exp(iq)$, with $h \in H$, $q \in Lie(H)$.
- Y is H-invariant $\Longrightarrow \exp(iq)z \in Y$. May assume $g = \exp(iq)$.

Proof - reductions

- $X = \overline{Hx}$ is not a closed orbit. $Y \subset X$ is H-minimal and $Z \subset Y$ is U-minimal.
- Fix $z \in \mathbb{Z}$ and a small neighborhood Ω of e in G.
- If $\Omega \cdot z \cap Y \subseteq Hz$, then Hz is open in Y (by homogeneity).
- So $Y \setminus Hz$ is closed and H-invariant. But, Y is H-minimal!
- There is $g \in \Omega$, $g \notin H$: $gz \in Y$.
- $\operatorname{Lie}(G) = \operatorname{Lie}(H) \oplus \sqrt{-1}\operatorname{Lie}(H)$.
- If g is small, then $g = h \exp(iq)$, with $h \in H$, $q \in Lie(H)$.
- Y is H-invariant $\Longrightarrow \exp(iq)z \in Y$. May assume $g = \exp(iq)$.

Proof - reductions

By taking Ω arbitrarily small, we proved

Lemma

There exists $q_n \in \text{Lie}(H)$, $q_n \to 0$, $\exp(iq_n)z \in Y$.

Let us write:

$$q_n = \begin{pmatrix} a_n & b_n \\ c_n & -a_n \end{pmatrix}.$$

Polynomials are important

$$u_{s}q_{n}u_{s}^{-1} = \begin{pmatrix} a_{n} + sc_{n} & b_{n} - 2a_{n}s - c_{n}s^{2} \\ c_{n} & -a_{n} - sc_{n} \end{pmatrix}$$
 $p_{n}(s) = b_{n} - 2a_{n}s - c_{n}s^{2}, \qquad \ell_{n}(s) = a_{n} + sc_{n}.$

Lemma

If either $a_n \neq 0$ or $c_n \neq 0$ for infinitely many n, then there is $s_n \to \infty$ so that $p_n(s_n) \to \xi \neq 0$ and $\ell_n(s_n) \to 0$ along a subsequence.

Proof.

Case:
$$c_n a_n \neq 0$$
, and $a_n / \sqrt{|c_n|} \rightarrow 0$. Take $s_n = 1 / \sqrt{|c_n|}$.

Case:
$$c_n a_n \neq 0$$
, and $a_n / \sqrt{|c_n|} \not\rightarrow 0$. Take $s_n = \varepsilon_n a_n / c_n$.

Case:
$$c_n a_n = 0$$
, easy.

Polynomials are important

$$u_{s}q_{n}u_{s}^{-1} = \begin{pmatrix} a_{n} + sc_{n} & b_{n} - 2a_{n}s - c_{n}s^{2} \\ c_{n} & -a_{n} - sc_{n} \end{pmatrix}$$
 $p_{n}(s) = b_{n} - 2a_{n}s - c_{n}s^{2}, \qquad \ell_{n}(s) = a_{n} + sc_{n}.$

Lemma

If either $a_n \neq 0$ or $c_n \neq 0$ for infinitely many n, then there is $s_n \to \infty$ so that $p_n(s_n) \to \xi \neq 0$ and $\ell_n(s_n) \to 0$ along a subsequence.

Proof.

Case: $c_n a_n \neq 0$, and $a_n / \sqrt{|c_n|} \rightarrow 0$. Take $s_n = 1 / \sqrt{|c_n|}$.

Case: $c_n a_n \neq 0$, and $a_n / \sqrt{|c_n|} \not\to 0$. Take $s_n = \varepsilon_n a_n / c_n$.

Case: $c_n a_n = 0$, easy.

Case: $|a_n| + |c_n| \neq 0$

Let's promote the previous lemma:

Lemma

If either $a_n \neq 0$ or $c_n \neq 0$ for infinitely many n, then $p_n(s_n t) \rightarrow \xi(t)$ and $\ell_n(s_n t) \rightarrow 0$ along a subsequence, where $\xi(t)$ is a non-constant polynomial and s_n is as in the previous lemma.

Polynomial divergence + minimal sets = done

- **1** Suppose $a_n \neq 0$ or $c_n \neq 0$ for infinitely many n.
- 2 Let $\xi(t)$ be the limiting polynomial from previous lemma. So, $u_{s_nt} \exp(iq_n)u_{s_nt}^{-1} \to v_{\xi(t)}$.
- **3** Let $z' \in Z$ be limit of $u_{s_n t} z$ along a subsequence:

$$u_{s_n t} \exp(iq_n) z = u_{s_n t} \exp(iq_n) u_{s_n t}^{-1} \cdot u_{s_n t} z \rightarrow v_{\xi(t)} z'.$$

Remember U and V commute and Z is U-minimal.

$$v_{\xi(t)}Z = v_{\xi(t)}\overline{Uz'} = \overline{Uv_{\xi(t)}z'} \subset Y.$$

Since this works for all t and $\xi(t)$ is non-constant ($+\epsilon$ more work):

$$VZ \subset Y$$
,

i.e. the orbit closure contains an orbit of V.

Polynomial divergence + minimal sets = done

- **1** Suppose $a_n \neq 0$ or $c_n \neq 0$ for infinitely many n.
- 2 Let $\xi(t)$ be the limiting polynomial from previous lemma. So, $u_{s_nt} \exp(iq_n)u_{s_nt}^{-1} \to v_{\xi(t)}$.
- **3** Let $z' \in Z$ be limit of $u_{s_n t} z$ along a subsequence:

$$u_{s_n t} \exp(iq_n) z = u_{s_n t} \exp(iq_n) u_{s_n t}^{-1} \cdot u_{s_n t} z \rightarrow v_{\xi(t)} z'.$$

4 Remember U and V commute and Z is U-minimal.

$$v_{\xi(t)}Z = v_{\xi(t)}\overline{Uz'} = \overline{Uv_{\xi(t)}z'} \subset Y.$$

Since this works for all t and $\xi(t)$ is non-constant ($+\epsilon$ more work):

$$VZ \subset Y$$
,

i.e. the orbit closure contains an orbit of V.

The case $a_n = c_n = 0$ is impossible

If $x = g\Gamma$, then the stabilizer $G_x = g\Gamma g^{-1}$.

Lemma

If $a_n = c_n = 0$ for all n, then there is a point z' whose stabilizer $G_{z'}$ inside G contains an upper triangular matrix with diagonal entries arbitrarily close to 1.

- Since G/Γ is compact, there is $\Omega \subset G$ a neighborhood of identity: $G_x \cap \Omega = \{e\}$ for **all** x.
 - Γ has a compact fundamental domain $D \subset G$ so elements of D cannot contract Γ too much.

The case $a_n = c_n = 0$ is impossible

1 If G_x contains an element of the form an, where a is diagonal and close to identity, and n is strictly upper triangular, then

$$ag_{-t}ng_{-t} \in G_{g_{-t}x}$$

2 But, $g_{-t}ng_t \to e$ as $t \to \infty$. Contradiction.

Producing upper triangular stabilizers

Principle

Recurrence of unipotent orbits along the normalizer is very special.

- If $a_n = c_n = 0$ for all n, this means that for all g close to identity, $gz \in Y$, then $g \in HV$.
- Also, it means there is a sequence $v_n \to e$ in $V: v_n z \in Y$.
- *Z* is *U*-minimal implies can find $u_n \in U$ with $u_n \to \infty$ and $u_n z \to z$.
- Fix one such u, uz = hvz, $h \in H$, $v \in V$ are small.
- But,

$$Y \ni uv_nz = v_nuz = v_nhvz.$$

• If v_n , h, v are small enough, then $v_nhvz \in \Omega z$, so $v_nhv = h'v'$.

Producing upper triangular stabilizers

• For $\varepsilon_n \neq 0$:

$$v_n = \begin{pmatrix} 1 & i\varepsilon_n \\ 0 & 1 \end{pmatrix}, \qquad vv'^{-1} = \begin{pmatrix} 1 & i\delta \\ 0 & 1 \end{pmatrix}.$$

• h is small so $h = \exp(q)$, $q = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$:

$$v_nqvv'^{-1} = \begin{pmatrix} a+i\varepsilon_nc & i(\delta-\varepsilon_n)a-\delta\varepsilon c+b \\ c & i\delta c-a \end{pmatrix}$$

- The only way this can be a real matrix is if c = 0.
- That means: $uz = hvz \Longrightarrow u^{-1}hvz = z$ and everything in sight is upper triangular!

Historical Remarks

- The above proof works for classification of closures of codimension 1 totally geodesic hyperplanes inside hyperbolic manifolds of higher dimensions. Compactness is not necessary, finite volume is enough.
- Ratner's proof is not topological and uses her classification of invariant measures of unipotent flows.
- Shah gave a topological proof in all codimensions.
- Very recently, McMullen, Mohammadi and Oh proved similar results for certain classes of infinite volume hyperbolic manifolds.

Thanks!