Let $X = \mathsf{SL}(2,\mathbb{R})/\mathsf{SL}(2,\mathbb{Z})$ and \mathbf{m}_X denote Haar measure on X.

Theorem 1. Let μ be a N-ergodic and invariant Borel probability measure on X. Either N is \mathbf{m}_X or it is supported on a periodic N orbit. Moreover if x is not a u periodic point then $\overline{\{u^tx\}} = X$.

1. Idea of proof

Lets try to show that

(1)
$$\frac{1}{T} \int_0^T f(\mathbf{u}^t x) dt \sim \int f d\mathbf{m}_X$$

under some assumptions to come later on x, T and f.

We will try to relate it to

(2)
$$\frac{1}{T\mathbf{m}_X(A)} \int_A \int_0^T f(\mathbf{u}^t y) dt dy$$

for $A \subset X$ with $\mathbf{m}_X(A) > 0$. This is good, because since \mathbf{m}_X is N ergodic, for all $\epsilon > 0$ and $f \in L^1(\mathbf{m}_X)$ there exists T_0 so that for every set B with $\mathbf{m}_X(B) > \epsilon$ we have

(3)
$$\left| \frac{1}{T\mathbf{m}_X(B)} \int_B \int_0^T f(\mathbf{u}^t y) dt dy - \int f d\mathbf{m}_X \right|.$$

Exercise 1. Prove this. Hint: Use the Birkhoff ergodic theorem.

It is natural to replace (2) by

(4)
$$\frac{1}{T}\frac{1}{abc}\int_0^T \int_0^c \int_0^b \int_0^a f(\mathsf{u}^t \mathsf{v}^\ell \mathsf{g}^r \mathsf{u}^s x) ds dr d\ell dt.$$

This leads to two issues:

Issue 1: $(\ell, r, s) \to \mathsf{v}^{\ell} \mathsf{g}^r \mathsf{u}^s x$ should be injective for $(\ell, r, s) \in [0, c] \times [0, b] \times [0, a]$.

-This is easy to arrange. Because there is some non-zero injectivity radius at x there is some c, b, a > 0 so that $(\ell, r, s) \to \mathsf{v}^\ell \mathsf{g}^r \mathsf{u}^s x$ is injective for $(\ell, r, s) \in [0, c] \times [0, b] \times [0, a]$. This will eat up positive measure say δ and we can choose $T > T_0$ for $\epsilon = \delta$ as in (3).

Issue 2: Why on earth should (4) be close to $\frac{1}{T} \int_0^T f(u_t x) dt$?

-We can choose c small enough depending on T so that

(5)
$$\mathsf{D}(\mathsf{u}^t\mathsf{v}^\ell\mathsf{g}^r\mathsf{u}^s,\mathsf{g}^r\mathsf{u}^{e^{-2r}t}\mathsf{u}^s) < \epsilon$$

for all $0 \le \ell \le c$ and $0 \le t \le T$. Now the g^r is less of an issue, because by our assumptions on D, $D(g^r u^{e^{-2r}t} u^s, u^{e^{-2r}t} u^s) \le |r|$. This makes it natural to request f is 1-Lipschitz.

Now this presents another issue. T depends on the measure of

$$\bigcup_{(\ell,r,s)\in[0,c]\times[0,b]\times[0,a]} \mathsf{v}^{\ell}\mathsf{g}^{r}\mathsf{u}^{s}x$$

so changing c requires changing T which will then require changing c again...

So how will we make c small while keeping the measure the same? Observe that

$$\bigcup_{(\ell,r,s)\in[0,c]\times[0,b]\times[0,a]}\mathsf{g}^d\mathsf{v}^\ell\mathsf{g}^r\mathsf{u}^s\mathsf{g}^{-d}x=\bigcup_{(\ell,r,s)\in[0,e^{-2d}c]\times[0,b]\times[0,e^{2d}a]}\mathsf{v}^\ell\mathsf{g}^r\mathsf{u}^sx.$$

So we can make c smaller by conjugating by \mathbf{g}^d . Now \mathbf{g}^d is a homeomorphism of X that preserves \mathbf{m}_X so we just need that $(\ell, r, s) \to \mathbf{v}^\ell \mathbf{g}^r \mathbf{u}^s \mathbf{g}^{-d} x$ is injective for $(\ell, r, s) \in [0, c] \times [0, b] \times [0, a]$. This requires:

Lemma 1. For all $\epsilon > 0$ there exists c, b, d > 0 so that for all $x \in \mathcal{K}_{\epsilon}$ so that $\mathsf{v}^{\alpha}\mathsf{g}^{\beta}\mathsf{u}^{s}x \neq \mathsf{v}^{\alpha'}\mathsf{g}^{\beta'}\mathsf{u}^{s'}x$ for all $(\alpha, \beta, s) \neq (\alpha', \beta', s')$ with $0 \leq \alpha < a, 0 \leq \beta < b, 0 \leq s < d$.

Where $K_{\epsilon} = \{x \in X : \text{ the shortest vector in the lattice } x \text{ has length at least } \epsilon\}$ and it is compact for all $\epsilon > 0$. Moreover,

Lemma 2. There exists ϵ_0 so that for all x that do not contain a horizontal vector, $\mathbf{g}^{-t}x \in \mathcal{K}_{\epsilon_0}$ for arbitrarily large t.

Recall: x is N-periodic iff x thought of as a lattice x has a horizontal vector. So the assumption on x in the Lemma is natural to make.

1.1. Round up: Given ϵ_0 as in Lemma 1, choose c, a > 0 so that $\phi_z : [0, c] \times [0, \delta] \times [0, a]$ given by $(\ell, r, s) \to \mathsf{v}^\ell \mathsf{g}^r \mathsf{u}^s z$ is injective for each $z \in \mathcal{K}_{\epsilon_0}$. Let ϵ be the measure of the image of ϕ_z and choose T_0 for this ϵ . Now choose c' so that (5) holds for all $0 \le \ell < c'$ and $0 \le T \le T_0$. We now choose d so that $g_{-d}x \in \mathcal{K}_{\epsilon_0}$ and $e^{-2d}c < c'$ which we can do by Lemma 1. By our choices

$$(6) \ |\frac{1}{T}\frac{1}{a\delta c}\int_{0}^{T}\int_{0}^{c}\int_{0}^{\delta}\int_{0}^{a}f(\mathbf{u}^{t}\mathbf{g}^{d}\mathbf{v}^{\ell}\mathbf{g}^{r}\mathbf{u}^{s}\mathbf{g}^{-d}x)dsdrd\ell dt-\int fd\mathbf{m}_{X}|<\epsilon.$$

Now this is equivalent to

$$|\frac{1}{T}\frac{1}{a\delta c'}\int_0^T\int_0^{e^{-2d}c}\int_0^\delta\int_0^{e^{2d}a}f(\mathbf{u}^t\mathbf{v}^\ell\mathbf{g}^r\mathbf{u}^sx)dsdrd\ell dt-\int fd\mathbf{m}_X|<\epsilon.$$

Now

$$|\frac{1}{T}\frac{1}{a\delta c}\int_0^T\int_0^c\int_0^\delta\int_0^af(\mathbf{u}^t\mathbf{v}^\ell\mathbf{g}^r\mathbf{u}^sx)dsdrd\ell dt - \frac{1}{Te^{2d}a}\int_0^T\int_0^{e^{2d}a}f(u_tu_sx)dsdt < 3\epsilon.$$

Now

$$\left| \frac{1}{Te^{2d}a} \int_0^T \int_0^{e^{2d}af(u_t u_s x)} - \frac{1}{T + e^{2d}a} \int_0^{T + e^{2d}a} f(u_t x) dt < \frac{2T}{T + e^{2d}a}.\right|$$

I have left out one issue: the distortion of the volume in our coordinates given by changing points in our compact set. This is not serious because \mathbf{g}^d preserves the measure and \mathbf{u}^t acts outside the set of positive measure in (3). One minor thing is we want to choose

$$\epsilon = \inf_{z \in \mathcal{K}_{\epsilon_0}} \mathbf{m}_X (\phi_z([0, c] \times [0, \delta] \times [0, a])).$$

One more significant thing is we need the following lemma:

Lemma 3. Let $\phi: \mathbb{R}^3 \to SL(2,\mathbb{R})$ by $\phi(\alpha,\beta,\gamma) \to \mathsf{v}^\alpha \mathsf{g}^\beta \mathsf{u}^\gamma$. There exists $\sigma > 0, \delta > 0$ so that $\frac{d\phi_*\lambda^3}{d\mathbf{m}_G}(\alpha,\beta,\gamma) \in [\sigma,2\sigma]$ for all $|\alpha|,|\beta|,|\gamma| < \delta$.

Using this lemma, we can adapt the proof of Exercise 1 to obtain our result. (This is needed for (6).)

2. What we showed

Proposition 1. If x has no horizontal vector and $f \in C_c(X)$ is 1-Lipshits then

$$\liminf_{T \to \infty} \left| \frac{1}{T} \int_0^T f(\mathsf{u}^t x) dt - \int f d\mathbf{m}_X \right| = 0.$$

Proof of Theorem 1 assuming Proposition 1. Assume μ is a N ergodic invariant probability measure that is not Haar. Then there exists x a generic point for μ along N and $f \in C_c(X)$ so that $\int f d\mu \neq \int f d\mathbf{m}_X$. Since Lipshitz functions are dense in $C_c(x)$ with supremum norm and therefore L^1 norm, we may assume f is Lipshitz. We may scale f to be 1-Lipshitz and observe that since $\int cfd\mu \neq \int cfd\mathbf{m}_X$ the proposition implies x must have a horizontal vector. This establishes the measure classification part of the Theorem.

Now if x is not supported on a periodic N orbit, it does not have a horizontal vector. If $U \subset X$ is open, there exists $f \in C_c(X)$, 1-Lipschitz so that the support of f is a non empty set in U. By the assumption of the proposition f there exists a sequence T_1, \ldots so that

$$\lim_{i \to \infty} \frac{1}{T_i} \int_0^{T_i} f(\mathbf{u}^t x) dt = \int f d\mathbf{m}_X$$

and so $u^t x \in U$ for some t. Since U was an arbitrary open set, we have established the measure classification part of the theorem. \square