Consider $S L(2, \mathbb{R})$. It is a locally compact, topological group. It has 3 important subgroups: $v_{s}=\left(\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right), u_{s}=\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)$ and
$g_{t}=\left(\begin{array}{cc}e^{\frac{t}{2}} & 0 \\ 0 & e^{-\frac{t}{2}}\end{array}\right)$.
We have the following relations:

$$
g_{t} v_{s}=\left(\begin{array}{cc}
e^{\frac{t}{2}} & 0 \\
e^{-\frac{t}{2}} s & e^{-\frac{t}{2}}
\end{array}\right)=v_{e^{-t_{s}} g_{t}}
$$

and

$$
g_{t} u_{s}=\left(\begin{array}{cc}
e^{\frac{t}{2}} & e^{\frac{t}{2}} s \\
0 & e^{-\frac{t}{2}}
\end{array}\right)=u_{e^{t_{s}}} g_{t}
$$

Also, there exists a locally finite measure $\mu$ on $S L(2, \mathbb{R})$, unique up to scaling so that $\mu$ is invariant for the left (in fact both left and right) action of $S L(2, \mathbb{R})$.

Let $\Gamma$ be a cocompact lattice in $S L(2, \mathbb{R})$.
That is, $\Gamma$ is a discrete subgroup of $S L(2, \mathbb{R})$ so that
$X:=S L(2, \mathbb{R}) / \Gamma$ is compact. Note that $S L(2, \mathbb{R})$ acts continuously on $X$ from the left.

We can choose $D \subset S L(2, \mathbb{R})$, a fundamental domain for the $\Gamma$ action and because $S L(2, \mathbb{R}) / \Gamma$ is compact $D$ can be chosen to have compact closure. Let be the measure on $X$ defined by $\mu_{X}(A)=\mu(\{g \in D: g \Gamma \in A \neq \emptyset\})$. Note that $S L(2, \mathbb{R})$ preserves $\mu_{X}$.

Theorem
(Furstenberg) $v_{s}$ is $\mu_{X}$ uniquely ergodic on $X$.
Because invariant measures are the convex hull of ergodic measures, it suffices to show that $v_{s}$ is uniquely ergodic.

Let $f \in C(X)$ and $M_{t}: X \rightarrow \mathbb{C}$ by $M_{t}(x)=\int_{0}^{1} f\left(g_{-\log (t)}\left(v_{s} x\right)\right) d s$.
Lemma
$\left\{M_{t}\right\}_{t \in \mathbb{R}^{+}}$is an equicontinuous family of functions. That is, for all $\epsilon>0$ exists $\delta>0$ so that for all $t$ if $d(x, y)<\delta$ then $\left|M_{t}(x)-M_{t}(y)\right|<\epsilon$.

- $\left|M_{t}(x)-M_{t}\left(v_{\ell} x\right)\right| \leq 2 \ell\|f\|_{\text {sup }}$ for all $\ell, x$.
- Indeed is $0 \leq \ell \leq 1$,
$\left|M_{t}(x)-M_{t}\left(v_{\ell} x\right)\right|=\left|\int_{0}^{1} f\left(g_{-\log (t)} v_{s} x\right)-\int_{0}^{1} f\left(g_{-\log (t)} v_{\ell+s} x\right) d s\right|$
$=\left|\int_{0}^{\ell} f\left(g_{-\log (t)} v_{s} x\right)-\int_{1}^{1+\ell} f\left(g_{-\log (t)} v_{s} x\right) d s\right|$.
-For all $\epsilon>0$ there exists $\delta>0$ so that $\left|M_{t}(x)-M_{t}\left(g_{\ell} x\right)\right|<\epsilon$ for all $0 \leq \ell \leq \delta$.
As before we expand $M_{t}$
$\left|M_{t}(x)-M_{t}\left(g_{\ell} x\right)\right|=\left|\int_{0}^{1}\left(f\left(g_{-\log (t)} v_{s} x\right) d s-\int_{0}^{1} f\left(g_{-\log (t)} v_{r} g_{\ell} x\right)\right) d r\right|$
$=\left|\int_{0}^{1}\left(f\left(g_{-\log (t)} v_{s} x\right) d s-\int_{0}^{1} f\left(g_{\ell} g_{-\log (t)} v_{r e} x\right)\right) d r\right|=$
$\mid \int_{0}^{1}\left(f\left(g_{-\log (t)} v_{s} x\right)-e^{-\ell} f\left(g_{\ell} g_{-\log (t)} v_{s} x\right)\right) d s-$
$\int_{1}^{e^{\ell}} e^{-\ell} f\left(g_{-\log (t)} v_{s} x\right) d s \mid$.
Now, because $f$ is uniformly continuous we have that there exists $\delta>0$ so that $\left|f(z)-f\left(g_{\ell} z\right)\right|<\epsilon$ for all $0 \leq \ell \leq \delta$ and $z \in X$.
If $0 \leq \ell \leq \delta$ then

$$
\left|M_{t}(x)-M_{t}\left(g_{\ell} x\right)\right|<\mid \int_{0}^{1}\left(e^{-\ell} \epsilon+\left(1-e^{-\ell}\|f\|_{\text {sup }}\right)\right) d s+\left(e^{\ell}-1\right) e^{-\ell}\|f\|_{\text {sup }}
$$

$-\delta \leq \ell \leq 0$ is similar and we have the claim.

- For all $\epsilon>0$ there exists $\delta>0$ so that $\left|M_{t}(x)-M_{t}\left(u_{\ell} x\right)\right|<\epsilon$ for all $0 \leq \ell \leq \delta$.
We have:

$$
v_{s} u_{\ell}=u_{\frac{\ell}{1+s \ell}} g_{-2 \log (1+s \ell)} v_{\frac{s}{1+s \ell}}
$$

-Applying $g_{-\log (t)}$ we get

$$
M_{t}\left(u_{\ell} X\right)=\int_{0}^{1} u_{\frac{\ell}{t(1+s \ell)}} g_{-\log (t)} g_{-2 \log (1+s \ell)} v_{\frac{s}{1+s \ell}} d s
$$

By similar methods to above, we have the claim

- As $\left\{u_{a} g_{b} v_{c} x:-\delta<a, b, c<\delta\right\}$ is a neighborhood of $x$, the triangle inequality implies the lemma.


## More conceptually

If $\alpha \in S L(2, \mathbb{R})$ is a close to the identity then there exists

- $\phi, C^{1}$ close to the identity function $h(x)=x$.
- $\psi:[0,1) \rightarrow U_{s} G_{\ell}, C^{0}$ close the constant function sending everything to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
$v_{s} \alpha=\psi(s) v_{\phi(s)}$. Because $g_{-\log (t)} u_{a} g_{b}=u_{\frac{a}{t}} g_{b} g_{-\log (t)}$, the equicontinuity of $\left\{M_{t}\right\}_{t \in \mathbb{R}^{+}}$follows.


## Lemma

${ }^{*}$ )Any limit of $M_{t_{i}}, h$, is a $v_{s}$ invariant function.

- $M_{t}=\frac{1}{t} \int_{0}^{t} f\left(v_{s} g_{-\log (t)^{x}}\right) d s$ and so

$$
M_{t_{i}} \circ g_{\log \left(t_{i}\right)}=\frac{1}{t_{i}} \int_{0}^{t_{i}} f\left(v_{s} x\right) d s
$$

- So by the Von-Neumann ergodic theorem $M_{t_{i}} \circ g_{\log (t)}$ converges in $L^{2}$ norm to projection of $f$ onto the $v_{s}$ invariant functions, $P f$.
- $\left\|M_{t_{i}} \circ g_{\log (t)}-P f\right\|_{2}=\left\|M_{t_{i}}-(P f) \circ g_{-\log \left(t_{i}\right)}\right\|_{2}$ and so tends to zero.
- So $(P f) \circ g_{-\log \left(t_{i}\right)} \xrightarrow{L^{2}\left(\mu_{X}\right)} h$.
-As $g_{-\log \left(t_{i}\right)} V_{s} g_{\log (t)}=V_{s}$ (as a set) $(P f) \circ g_{-\log \left(t_{i}\right)}$ is $V_{s}$ invariant like $P f$ is.
- So $h$ is a limit of $v_{s}$ invariant functions and thus it is $v_{s}$ invariant as well.


## Alternately

We want to show that any limit of $M_{t_{i}}$ is a $v_{s}$ invariant function. The previous proof relied on the fact that any limit of $M_{t_{i}}$ is a $\left(L^{2}\left(\mu_{X}\right)\right)$ limit of $u_{s}$ invariant functions. Can we see this directly?

- $M_{t}(x)=\frac{1}{t} \int_{0}^{t} f\left(v_{s} g_{-\log (t)} x\right) d s$.
- Let $V(\epsilon, t)=\left\{z:\left|\frac{1}{t} \int_{0}^{t} f\left(v_{s} z\right) d s-\lim _{\ell \rightarrow \infty} \frac{1}{\ell} \int_{0}^{\ell} f\left(v_{r} x\right) d r\right|<\epsilon\right\}$.
- By the Birkhoff ergodic theorem and the Ergodic decomposition, $\mu_{X}(V(\epsilon, t)) \longrightarrow 1$.
- Let $H(x)=\lim _{t \rightarrow \infty} \frac{1}{\ell} \int_{0}^{\ell} f\left(v_{r} x\right) d r$.
$H$ is a $v_{s}$ invariant function. It is $P f$ where $P$ is projection onto the constants. $\left\|H \circ g_{-\log (t)}-M_{t}\right\|_{2} \rightarrow 0$.


## Proof of Furstenberg's Theorem

- Because $\left\{M_{t}\right\}$ is an equicontinuous family there exists $t_{i} \rightarrow \infty$ so that $M_{t_{i}} \rightarrow h$ in $\|\cdot\|_{\text {sup }}$.
- $h$ is clearly continuous and by the previous lemma it is $v_{s}$ invariant.
- Hedlund proved that every $v_{s}$ orbit is dense and so $h$ is constant.
- On the other have if there exist two $v_{s}$ ergodic probability measures, $\nu_{1}, \nu_{2}$ then there exists a continuous function $f$ so that $\int f d \nu_{1} \neq \int f d \nu_{2}$.
- It is easy to see that for this $f, M_{t}$ would never converge to a constant function.


## Going further

## Theorem

$v_{t}$ is weakly mixing.

- If $f\left(v_{s} x\right)=e^{2 \pi i \alpha s} f(x)$ then

$$
f \circ g_{\ell}\left(v_{s} x\right)=f\left(v_{e^{-\ell}} g_{\ell} x\right)=e^{2 \pi \alpha e^{-\ell} s} f \circ g_{\ell}(x)
$$

- So if we have a non-trivial eigenvalue we have uncountably many distinct eigenvalues.
- But eigenfunctions with different eigenvalues are orthogonal
- Since $L^{2}\left(\mu_{X}\right)$ is separable, this is a contradiction

Corollary
$\mu_{X}$ is $v_{\ell}$ ergodic as a $\mathbb{Z}$ dynamical system for all $\ell \neq 0$.

## What about the time 1 map

Theorem
$v_{1}$ is $\mu_{X}$ uniquely ergodic.

- Let $\nu$ be a $v_{1}$ ergodic measure (as a $\mathbb{Z}$ system).
- $\left(v_{s}\right)_{*} \nu$ is too and as $\mu_{X}$ is $v_{s}$ invariant, $\left(v_{s}\right)_{*} \nu=\mu_{X}$ iff $\nu=\mu_{X}$.
- $\int_{0}^{1}\left(v_{t}\right)_{*} \nu d t$ is $v_{s}$ invariant for all $s$.
- So it is $\mu_{X}$.
- But since $\mu_{X}$ is an extreme point in the simplex of $v_{1}$ invariant measure, $\left(v_{t}\right)_{*}=\mu_{X}$ for almost every and thus every $t$.


## Going further

Theorem
$g_{t}$ is ergodic
Idea of proof:

- Let $A$ be $g_{-t}$ invariant set with $\mu_{X}(A)>0$. There exists $\delta>0$ so that

$$
\mu_{X}\left(A \backslash v_{s} A\right)<\epsilon \mu_{X}(A)
$$

for all $|s|<\delta$.

- Applying $g_{-t}$ we have the same result for $|s|<e^{t} \delta$.
- Since $\epsilon$ is arbitrary we have $\mu_{X}\left(A \backslash v_{s} A\right)=0$.
- Since $v_{s}$ is ergodic, $A$ has full measure.


## Going further

What about $X^{\prime}=S L(2, \mathbb{R}) / S L(2, \mathbb{Z})$ ?
Theorem
$\mu_{X^{\prime}}$ is the unique Borel probability measure $\nu$, so that $\nu\left(\left\{x \in X^{\prime}: g_{t} x \xrightarrow{t \rightarrow+\infty}=\infty\right\}\right)=0$.

## Steps

Let $f \in C_{c}\left(X^{\prime}\right)$ and $M_{t}$ be as above.

- $\left\{M_{t}\right\}_{t \in \mathbb{R}^{+}}$with the topology of uniform convergence on compact sets is a precompact family of functions.
- Any limit is continuous and $v_{s}$ invariant as above.
- As there is a dense orbit the limit is constant.
- If $g_{t} x \nrightarrow \infty$ then there exists $z \in X, t_{i} \rightarrow \infty$ so that $g_{t_{i}} x=z$. -Passing to a further subsequence, we may assume that $M_{t_{i}}$ converges.
$-M_{t_{i}}(z)$ converges to $\frac{1}{t_{k}} \int_{0}^{t_{k}} f\left(v_{s} x\right) d s$.
-So every point with a $g_{t}$ limit is generic for $\mu_{X^{\prime}}$.
Note that the complement of this set is exactly the periodic $v_{s}$ orbits.

