Theorem
Let $A: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ by $A(x)=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\binom{x_{1}}{x_{2}} \bmod 1$.
A is mixing with respect to Lebesgue measure.
Recall that A is mixing if for any pair of measurable set S_{1}, S_{2} we have that

$$
\lim _{n \rightarrow \infty} \operatorname{Leb}\left(A \cap A^{-n} S_{1} \cap S_{2}\right)=\operatorname{Leb}\left(S_{1}\right) \operatorname{Leb}\left(S_{2}\right)
$$

The proof is much more general.

Two facts

1. If A is not mixing then there exists n_{1}, \ldots and $f \in L^{2}, g$ non-constant so that

$$
\frac{1}{m} \sum_{i=0}^{m} f \circ T^{n_{i}} \rightarrow g \text { and } \frac{1}{m} \sum_{i=0}^{m} f \circ T^{-n_{i}} \rightarrow g
$$

almost everywhere.
2. Given g as in fact 1 , there exists a set of full measure G so that if $x, y \in G$ and $\lim _{n \rightarrow+\infty} d\left(A^{n} x, A^{n} y\right)=0$ then $g(x)=g(y)$ and if $(x, y) \in G$ and $\lim _{n \rightarrow-\infty} d\left(A^{n} x, A^{n} y\right)=0$ then $g(x)=g(y)$.

Proof of Theorem assuming facts

- If $\binom{x_{1}}{x_{2}}=\binom{y_{1}}{y_{2}}+t\binom{1}{\frac{\sqrt{5}-1}{2}} \bmod 1$ then
$\lim _{n \rightarrow-\infty} d\left(A^{n} x, A^{n} y\right)=0$.
- If $\binom{x_{1}}{x_{2}}=\binom{y_{1}}{y_{2}}+t\binom{1}{\frac{\sqrt{5}+1}{2}} \bmod 1$ then $\lim _{n \rightarrow \infty} d\left(A^{n} x, A^{n} y\right)=0$.
- For almost every z we have $z+t\binom{1}{\frac{\sqrt{5}-1}{2}}$ is in G for a.e. t.
- For almost every t we have $z+t\binom{1}{\frac{\sqrt{5}-1}{2}}+s\binom{1}{\frac{\sqrt{5}+1}{2}}$ is in G for a. e. s.
- For any such z we have $g\left(z^{\prime}\right)=g(z)$ for a.e. z^{\prime}.
- So this contradicts fact 1.

Fact 1

Lemma

If $T:(X, \mu) \rightarrow(X, \mu)$ is not mixing then there exist, $f, g \in L^{2}(\mu)$ with $\int f d \mu=0$ and $m_{k} \rightarrow \infty$ so that

$$
f \circ T^{m_{k}} \rightarrow g \text { and } f \circ T^{-m_{k}} \rightarrow g
$$

weakly in $L^{2}(\mu)$.
This means that for any $h \in L^{2}(\mu)$ we have $\left\langle f \circ T^{m_{k}}, h\right\rangle \rightarrow\langle g, h\rangle$ and $\left\langle f \circ T^{-m_{k}}, h\right\rangle \rightarrow\langle g, h\rangle$.

Why weak limits? The weak topology on $L^{2}(\mu)$ of norm at most N is a compact metric space. (If $\left\{\phi_{j}\right\}$ is an orthonormal basis $d(f, g)=\sum_{j=1}^{\infty}\left|\left\langle f-g, \phi_{j}\right\rangle\right|$ is such a a metric.)
So we have limits (which may be projection onto constants)!
In fact if $f \in L^{2}(\mu)$ and T is μ-measure preserving then $f \circ V^{i}$ along a subsequence. More is true if T is μ measure preserving then the Koopman operator U_{T}^{n} has a subsequential limit in the weak operator topology, the topology of pointwise convergence in the weak topology.

This follows by observing that if $\left\{\phi_{j}\right\}$ is an orthonormal basis and $V_{1}, \ldots, V_{\infty}$ are unitary operators so that $\lim _{j \rightarrow \infty}\left\langle V_{j} \phi_{\ell}, g\right\rangle=\left\langle V_{\infty} \phi_{j}, g\right\rangle$ for all g in L^{2} then $\left.\underset{j \rightarrow \infty}{\langle } V_{j} h, g\right\rangle=\left\langle V_{\infty} h, g\right\rangle$ for all g, h in L^{2}.

Weak convergence for mixing transformations

(X, μ, T) is mixing iff U_{T}^{n} converges weakly to projection onto the constant functions, but it does not converge strongly to anything.

Indeed, because the span of characteristic functions of measurable sets is dense in L^{2}, T mixing implies that for all $f, g \in L^{2}$ we have that
$\left\langle f \circ T^{n}, g\right\rangle \rightarrow\langle f, 1\rangle\langle 1, g\rangle$.
In general, U_{T}^{n} does not need to converge to anything in the weak operator topology, but it does converge along a subsequence.

This proof uses the spectral theorem:
Theorem
Let $T: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is unitary and $f \in L^{2}(\mu)$. Let
$H_{f}=\overline{\operatorname{span}\left\{f \circ T^{n}\right\}}$. For each $f \in L^{2}(\mu)$ there exists σ_{f}, a measure on $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ and $V: H_{f} \rightarrow L^{2}\left(\sigma_{f}\right)$, unitary, so that

$$
\langle f, f\rangle=\int d \sigma_{f} \text { and }\langle g \circ T, f\rangle=\int_{S^{1}} z \cdot(V g) d \sigma_{f} .
$$

- If f is an eigenfunction, with eigenvalue λ then $H_{f}=\mathbb{C} f$ and σ_{f} is point mass at λ.
- This theorem is convenient for the weak topology, because the statement is about inner products.
- Note that if $g=\sum a_{j} f \circ T^{j}$ we have $V(g)=\sum a_{j} z^{j}$ (as a function in $\left.L^{2}\left(\sigma_{f}\right)\right)$.

Proof of Lemma

- There exists such f so that $f \circ T^{n} \nrightarrow 0$ weakly.
- So there exists $n_{j} \in \mathbb{Z}$ and $\phi \in L^{2}(\mu)$ so that $f \circ T^{n_{j}} \rightarrow \psi$ weakly.
- So by the spectral theorem there exists n_{j} so that $z^{n_{j}} \rightarrow \phi=V \psi$ weakly in $L^{2}\left(\sigma_{f}\right)$ the spectral measure (on S^{1}) associated to f.
- Note that $z^{-n_{j}} \rightarrow \bar{\phi}$ weakly.
- One can show that there exist m_{j}, m_{j}^{\prime} so that $z^{n_{m_{j}}-n_{m_{j}^{\prime}}} \rightarrow \phi \cdot \bar{\phi}$ in $L^{2}\left(\sigma_{f}\right)$.
- Since $\phi \cdot \bar{\phi}$ is real valued, the same is true for $z^{-\left(n_{m_{j}}-n_{m_{j}^{\prime}}\right)}$.
- By the spectral theorem if $h=\lim \sum a_{j} f \circ T^{j}$ then

$$
\left\langle f \circ T^{n}, h\right\rangle=\lim \sum a_{j} \int z^{n-j} d \sigma_{f}
$$

- So $f \circ T^{n_{m_{j}}-n_{m_{j}^{\prime}}}$ converges weakly on $\overline{\operatorname{span}\left\{f \circ T^{n}\right\}}$.
- It is trivial that it also converges weakly on $\overline{\operatorname{span}\left\{f \circ T^{n}\right\}}{ }^{\perp}$.

Theorem
(Banach-Saks) If $f_{j} \rightarrow g$ weakly then there exists n_{j} so that

$$
\frac{1}{m} \sum_{j=1}^{m} f_{n_{j}} \rightarrow g \text { a.e. }
$$

- It suffices to show this for $g \equiv 0$.
- Given n_{1}, \ldots, n_{j-1}, choose n_{j} so that $\left\langle f_{n_{j}}, f_{n_{\ell}}\right\rangle<\frac{1}{2^{j}}$ for all $\ell<j$.
- Observe $\left\langle\sum_{j=1}^{m} f_{n_{j}}, \sum_{j=1}^{m} f_{n_{j}}\right\rangle=O(m)$ and so $\frac{1}{m} \sum_{j=1}^{m} f_{n_{j}} \rightarrow 0$ in L^{2}. details
- L^{2} convergence implies convergence a.e. along a subsequence.

Fact 2

- By Lusin's theorem, for every $\epsilon>0$ there exists k so that for all $\ell>k$ there is a set B_{ℓ} of measure at most ϵ so that if $x, y \notin B_{\ell}$ and $d\left(A^{i} x, A^{i} y\right) \rightarrow 0$ then

$$
\left|\frac{1}{\ell} \sum_{i=1}^{\ell} f\left(A^{n_{i}} x\right)-\frac{1}{\ell} \sum_{i=1}^{\ell} f\left(A^{n_{i}} y\right)\right|<\epsilon
$$

- This gives that there is a full measure set G^{\prime} so that if $x, y \in G^{\prime}$ and $d\left(A^{i} x, A^{i} y\right) \rightarrow 0$ then
$\left|\frac{1}{\ell} \sum_{i=1}^{\ell} f\left(A^{n_{i}} x\right)-\frac{1}{\ell} \sum_{i=1}^{\ell} f\left(A^{n_{i}} y\right)\right| \rightarrow 0$ along a subsequence.
- Because $\frac{1}{m} \sum_{i=1}^{m} f\left(A^{n_{i}}\right)$ converges almost everywhere we have fact 2.
-Let G be the full measure set where we have convergence intersected with G^{\prime}.

Details

Lemma

If $z^{j \ell} \rightarrow g$ and $z^{k \ell} \rightarrow h$ weakly in $L^{2}(\sigma)$ then there exist subsequences j_{ℓ}^{\prime} and k_{ℓ}^{\prime} so that $z^{j^{\prime}}+k_{\ell}^{\prime} \rightarrow g \cdot h$ weakly.

- For any $r \in \mathbb{Z}$ and $\phi \in L^{2}(\sigma)$ we have that $\int g z^{r} \bar{\phi} d \sigma=\lim _{j \ell}\left\langle z^{j_{\ell}+r}, \phi\right\rangle$.
- $\langle g \cdot h, \phi\rangle=\langle g, \bar{\phi} \cdot h\rangle=\lim _{\ell \rightarrow \infty}\left\langle z^{j \ell} \cdot h, \phi\right\rangle$.
- Now for each $\epsilon>0, \phi$ and ℓ there exists k_{0} so that for all $r \geq r_{0}$ we have $\left|\left\langle z^{j \ell} \cdot z^{k_{r}}, \phi\right\rangle-\left\langle z^{j \ell} \cdot h, \phi\right\rangle\right|<\epsilon$.
- So there exists n_{ℓ}, m_{ℓ} subsequences of j_{ℓ} and k_{ℓ} respectively so that $\left\langle z^{n_{\ell}} z^{m_{\ell}}, \phi\right\rangle \rightarrow\langle g \cdot h, \phi\rangle$.
- Choosing $\phi_{1}, .$. an ortho-normal basis for $L^{2}(\sigma)$ and applying a diagonal argument gives the lemma.

Details

$\left\langle\sum_{j=1}^{m} f_{j}, \sum_{j=1}^{m}\right\rangle \leq \sum_{j=1}^{m}\left\langle f_{j}, f_{j}\right\rangle+\sum_{k=1}^{j-1} 2 \operatorname{Re}\left(\left\langle f_{j}, f_{k}\right\rangle\right) \leq$ $m \sup \left\{\|f\|_{2}^{2}\right\}+2 \sum_{j=1}^{m} \frac{j-1}{j^{j}}$

Back

