Theorem

Let
$$A : \mathbb{T}^2 \to \mathbb{T}^2$$
 by $A(x) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mod 1$.
A is mixing with respect to Lebesgue measure.
Recall that A is mixing if for any pair of measurable set S_1, S_2 we have that

$$\lim_{n\to\infty} Leb(A\cap A^{-n}S_1\cap S_2) = Leb(S_1)Leb(S_2).$$

The proof is much more general.

Two facts

1. If A is not mixing then there exists $n_1, ...$ and $f \in L^2$, g non-constant so that

$$\frac{1}{m}\sum_{i=0}^m f \circ T^{n_i} \to g \text{ and } \frac{1}{m}\sum_{i=0}^m f \circ T^{-n_i} \to g$$

almost everywhere.

Given g as in fact 1, there exists a set of full measure G so that if x, y ∈ G and lim_{n→+∞} d(Aⁿx, Aⁿy) = 0 then g(x) = g(y) and if (x, y) ∈ G and lim_{n→-∞} d(Aⁿx, Aⁿy) = 0 then g(x) = g(y).

Proof of Theorem assuming facts

- For any such z we have g(z') = g(z) for a.e. z'.
- So this contradicts fact 1.

Fact 1

Lemma

If $T : (X, \mu) \to (X, \mu)$ is not mixing then there exist, $f, g \in L^2(\mu)$ with $\int f d\mu = 0$ and $m_k \to \infty$ so that

$$f \circ T^{m_k} \to g \text{ and } f \circ T^{-m_k} \to g$$

weakly in $L^2(\mu)$.

This means that for any $h \in L^2(\mu)$ we have $\langle f \circ T^{m_k}, h \rangle \rightarrow \langle g, h \rangle$ and $\langle f \circ T^{-m_k}, h \rangle \rightarrow \langle g, h \rangle$.

Why weak limits? The weak topology on $L^2(\mu)$ of norm at most N is a compact metric space. (If $\{\phi_j\}$ is an orthonormal basis $d(f,g) = \sum_{i=1}^{\infty} |\langle f - g, \phi_j \rangle|$ is such a a metric.)

So we have limits (which may be projection onto constants)!

In fact if $f \in L^2(\mu)$ and T is μ -measure preserving then $f \circ V^i$ along a subsequence. More is true if T is μ measure preserving then the Koopman operator U_T^n has a subsequential limit in the weak operator topology, the topology of pointwise convergence in the weak topology.

This follows by observing that if $\{\phi_j\}$ is an orthonormal basis and $V_1, ..., V_\infty$ are unitary operators so that $\lim_{j \to \infty} \langle V_j \phi_\ell, g \rangle = \langle V_\infty \phi_j, g \rangle$ for all g in L^2 then $\langle V_j h, g \rangle = \langle V_\infty h, g \rangle$ for all g, h in L^2 .

Weak convergence for mixing transformations

 (X, μ, T) is mixing iff U_T^n converges weakly to projection onto the constant functions, but it does not converge strongly to anything.

Indeed, because the span of characteristic functions of measurable sets is dense in L^2 , T mixing implies that for all $f,g \in L^2$ we have that

$$\langle f \circ T^n, g \rangle \to \langle f, 1 \rangle \langle 1, g \rangle.$$

In general, U_T^n does not need to converge to anything in the weak operator topology, but it does converge along a subsequence.

(日) (同) (三) (三) (三) (○) (○)

This proof uses the spectral theorem:

Theorem Let $T : L^2(\mu) \to L^2(\mu)$ is unitary and $f \in L^2(\mu)$. Let $H_f = \overline{span}\{f \circ T^n\}$. For each $f \in L^2(\mu)$ there exists σ_f , a measure on $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ and $V : H_f \to L^2(\sigma_f)$, unitary, so that

$$\langle f, f \rangle = \int d\sigma_f \text{ and } \langle g \circ T, f \rangle = \int_{S^1} z \cdot (Vg) d\sigma_f.$$

- If f is an eigenfunction, with eigenvalue λ then $H_f = \mathbb{C}f$ and σ_f is point mass at λ .
- This theorem is convenient for the weak topology, because the statement is about inner products.

▶ Note that if $g = \sum a_j f \circ T^j$ we have $V(g) = \sum a_j z^j$ (as a function in $L^2(\sigma_f)$).

Proof of Lemma

- There exists such f so that $f \circ T^n \not\rightarrow 0$ weakly.
- ▶ So there exists $n_j \in \mathbb{Z}$ and $\phi \in L^2(\mu)$ so that $f \circ T^{n_j} \to \psi$ weakly.
- ► So by the spectral theorem there exists n_j so that $z^{n_j} \rightarrow \phi = V\psi$ weakly in $L^2(\sigma_f)$ the spectral measure (on S^1) associated to f.

• Note that
$$z^{-n_j} \to \bar{\phi}$$
 weakly.

- One can show that there exist m_j, m'_j so that $z^{n_{m_j}-n_{m'_j}} \to \phi \cdot \bar{\phi}$ in $L^2(\sigma_f)$. details
- Since $\phi \cdot \overline{\phi}$ is real valued, the same is true for $z^{-(n_{m_j}-n_{m_j'})}$.
- By the spectral theorem if $h = \lim \sum a_j f \circ T^j$ then

$$\langle f \circ T^n, h \rangle = \lim \sum a_j \int z^{n-j} d\sigma_f.$$

So f ∘ T^{nmj-nm'_j} converges weakly on span{f ∘ Tⁿ}.
 It is trivial that it also converges weakly on span{f ∘ Tⁿ}.

Theorem (Banach-Saks) If $f_i \rightarrow g$ weakly then there exists n_i so that

$$rac{1}{m}\sum_{j=1}^m f_{n_j} o g$$
 a.e.

- It suffices to show this for $g \equiv 0$.
- Given $n_1, ..., n_{j-1}$, choose n_j so that $\langle f_{n_j}, f_{n_\ell} \rangle < \frac{1}{2^j}$ for all $\ell < j$.
- Observe $\langle \sum_{j=1}^{m} f_{n_j}, \sum_{j=1}^{m} f_{n_j} \rangle = O(m)$ and so $\frac{1}{m} \sum_{j=1}^{m} f_{n_j} \to 0$ in L^2 . details
- ► L² convergence implies convergence a.e. along a subsequence.

Fact 2

By Lusin's theorem, for every ε > 0 there exists k so that for all ℓ > k there is a set B_ℓ of measure at most ε so that if x, y ∉ B_ℓ and d(Aⁱx, Aⁱy) → 0 then

$$|rac{1}{\ell}\sum_{i=1}^\ell f(\mathcal{A}^{n_i}x) - rac{1}{\ell}\sum_{i=1}^\ell f(\mathcal{A}^{n_i}y)| < \epsilon.$$

- This gives that there is a full measure set G' so that if x, y ∈ G' and d(Aⁱx, Aⁱy) → 0 then
 |¹/_ℓ ∑^ℓ_{i=1} f(A^{n_i}x) - ¹/_ℓ ∑^ℓ_{i=1} f(A^{n_i}y)| → 0 along a subsequence.
- Because $\frac{1}{m} \sum_{i=1}^{m} f(A^{n_i})$ converges almost everywhere we have fact 2.

-Let G be the full measure set where we have convergence intersected with G'.

Details

Lemma If $z^{j_{\ell}} \to g$ and $z^{k_{\ell}} \to h$ weakly in $L^{2}(\sigma)$ then there exist subsequences j'_{ℓ} and k'_{ℓ} so that $z^{j'_{\ell}+k'_{\ell}} \to g \cdot h$ weakly.

► For any
$$r \in \mathbb{Z}$$
 and $\phi \in L^2(\sigma)$ we have that

$$\int g z^r \overline{\phi} d\sigma = \lim_{j_{\ell}} \langle z^{j_{\ell}+r}, \phi \rangle.$$

$$\blacktriangleright \langle g \cdot h, \phi \rangle = \langle g, \overline{\phi} \cdot h \rangle = \lim_{\ell \to \infty} \langle z^{j_{\ell}} \cdot h, \phi \rangle.$$

- ▶ Now for each $\epsilon > 0$, ϕ and ℓ there exists k_0 so that for all $r \ge r_0$ we have $|\langle z^{j_\ell} \cdot z^{k_r}, \phi \rangle \langle z^{j_\ell} \cdot h, \phi \rangle| < \epsilon$.
- ▶ So there exists n_{ℓ}, m_{ℓ} subsequences of j_{ℓ} and k_{ℓ} respectively so that $\langle z^{n_{\ell}} z^{m_{\ell}}, \phi \rangle \rightarrow \langle g \cdot h, \phi \rangle$.
- Choosing φ₁,.. an ortho-normal basis for L²(σ) and applying a diagonal argument gives the lemma.

Back

$$\begin{split} & \langle \sum_{j=1}^{m} f_{j}, \sum_{j=1}^{m} \rangle \leq \sum_{j=1}^{m} \langle f_{j}, f_{j} \rangle + \sum_{k=1}^{j-1} 2Re\big(\langle f_{j}, f_{k} \rangle \big) \leq \\ & m \sup\{ \|f\|_{2}^{2} \} + 2 \sum_{j=1}^{m} \frac{j-1}{2^{j}} \end{split}$$