
Theorem

Let A : T2 → T2 by A(x) =

(
2 1
1 1

)(
x1
x2

)
mod 1.

A is mixing with respect to Lebesgue measure.

Recall that A is mixing if for any pair of measurable set S1,S2 we
have that

lim
n→∞

Leb(A ∩ A−nS1 ∩ S2) = Leb(S1)Leb(S2).

The proof is much more general.



Two facts

1. If A is not mixing then there exists n1, ... and f ∈ L2, g
non-constant so that

1

m

m∑
i=0

f ◦ T ni → g and
1

m

m∑
i=0

f ◦ T−ni → g

almost everywhere.

2. Given g as in fact 1, there exists a set of full measure G so
that if x , y ∈ G and lim

n→+∞
d(Anx ,Any) = 0 then g(x) = g(y)

and if (x , y) ∈ G and lim
n→−∞

d(Anx ,Any) = 0 then

g(x) = g(y).



Proof of Theorem assuming facts

I If

(
x1
x2

)
=

(
y1
y2

)
+ t

(
1√
5−1
2

)
mod 1 then

lim
n→−∞

d(Anx ,Any) = 0.

I If

(
x1
x2

)
=

(
y1
y2

)
+ t

(
1√
5+1
2

)
mod 1 then

lim
n→∞

d(Anx ,Any) = 0.

I For almost every z we have z + t

(
1√
5−1
2

)
is in G for a.e. t.

I For almost every t we have z + t

(
1√
5−1
2

)
+ s

(
1√
5+1
2

)
is in

G for a. e. s.

I For any such z we have g(z ′) = g(z) for a.e. z ′.

I So this contradicts fact 1.



Fact 1

Lemma
If T : (X , µ)→ (X , µ) is not mixing then there exist, f , g ∈ L2(µ)
with

∫
fdµ = 0 and mk →∞ so that

f ◦ Tmk → g and f ◦ T−mk → g

weakly in L2(µ).

This means that for any h ∈ L2(µ) we have 〈f ◦ Tmk , h〉 → 〈g , h〉
and 〈f ◦ T−mk , h〉 → 〈g , h〉.



Why weak limits? The weak topology on L2(µ) of norm at most N
is a compact metric space. (If {φj} is an orthonormal basis
d(f , g) =

∑∞
j=1 |〈f − g , φj〉| is such a a metric.)

So we have limits (which may be projection onto constants)!

In fact if f ∈ L2(µ) and T is µ-measure preserving then f ◦ V i

along a subsequence. More is true if T is µ measure preserving
then the Koopman operator Un

T has a subsequential limit in the
weak operator topology, the topology of pointwise convergence in
the weak topology.

This follows by observing that if {φj} is an orthonormal basis and
V1, ...,V∞ are unitary operators so that lim

j→∞
〈Vjφ`, g〉 = 〈V∞φj , g〉

for all g in L2 then 〈
j→∞

Vjh, g〉 = 〈V∞h, g〉 for all g , h in L2.



Weak convergence for mixing transformations

(X , µ,T ) is mixing iff Un
T converges weakly to projection onto the

constant functions, but it does not converge strongly to anything.

Indeed, because the span of characteristic functions of measurable
sets is dense in L2, T mixing implies that for all f , g ∈ L2 we have
that
〈f ◦ T n, g〉 → 〈f , 1〉〈1, g〉.

In general, Un
T does not need to converge to anything in the weak

operator topology, but it does converge along a subsequence.



This proof uses the spectral theorem:

Theorem
Let T : L2(µ)→ L2(µ) is unitary and f ∈ L2(µ). Let
Hf = span{f ◦ T n}. For each f ∈ L2(µ) there exists σf , a measure
on S1 = {z ∈ C : |z | = 1} and V : Hf → L2(σf ), unitary, so that

〈f , f 〉 =

∫
dσf and 〈g ◦ T , f 〉 =

∫
S1

z · (Vg)dσf .

I If f is an eigenfunction, with eigenvalue λ then Hf = Cf and
σf is point mass at λ.

I This theorem is convenient for the weak topology, because the
statement is about inner products.

I Note that if g =
∑

aj f ◦ T j we have V (g) =
∑

ajz
j (as a

function in L2(σf )).



Proof of Lemma
I There exists such f so that f ◦ T n 6→ 0 weakly.
I So there exists nj ∈ Z and φ ∈ L2(µ) so that f ◦ T nj → ψ

weakly.
I So by the spectral theorem there exists nj so that

znj → φ = Vψ weakly in L2(σf ) the spectral measure (on S1)
associated to f .

I Note that z−nj → φ̄ weakly.

I One can show that there exist mj ,m
′
j so that z

nmj
−nm′

j → φ · φ̄
in L2(σf ). details

I Since φ · φ̄ is real valued, the same is true for z
−(nmj

−nm′
j
)
.

I By the spectral theorem if h = lim
∑

aj f ◦ T j then

〈f ◦ T n, h〉 = lim
∑

aj

∫
zn−jdσf .

I So f ◦ T
nmj
−nm′

j converges weakly on span{f ◦ T n}.
I It is trivial that it also converges weakly on span{f ◦ T n}⊥.



Theorem
(Banach-Saks) If fj → g weakly then there exists nj so that

1

m

m∑
j=1

fnj → g a.e.

I It suffices to show this for g ≡ 0.

I Given n1, ..., nj−1, choose nj so that 〈fnj , fn`〉 < 1
2j

for all
` < j .

I Observe 〈
∑m

j=1 fnj ,
∑m

j=1 fnj 〉 = O(m) and so 1
m

∑m
j=1 fnj → 0

in L2. details

I L2 convergence implies convergence a.e. along a subsequence.



Fact 2

I By Lusin’s theorem, for every ε > 0 there exists k so that for
all ` > k there is a set B` of measure at most ε so that if
x , y /∈ B` and d(Aix ,Aiy)→ 0 then

|1
`

∑̀
i=1

f (Ani x)− 1

`

∑̀
i=1

f (Ani y)| < ε.

I This gives that there is a full measure set G ′ so that if
x , y ∈ G ′ and d(Aix ,Aiy)→ 0 then
|1`
∑`

i=1 f (Ani x)− 1
`

∑`
i=1 f (Ani y)| → 0 along a subsequence.

I Because 1
m

∑m
i=1 f (Ani ) converges almost everywhere we have

fact 2.
-Let G be the full measure set where we have convergence
intersected with G ′.



Details

Lemma
If z j` → g and zk` → h weakly in L2(σ) then there exist
subsequences j ′` and k ′` so that z j

′
`+k ′

` → g · h weakly.

I For any r ∈ Z and φ ∈ L2(σ) we have that∫
gz rφdσ = lim

j`
〈z j`+r , φ〉.

I 〈g · h, φ〉 = 〈g , φ̄ · h〉 = lim
`→∞

〈z j` · h, φ〉.

I Now for each ε > 0, φ and ` there exists k0 so that for all
r ≥ r0 we have |〈z j` · zkr , φ〉 − 〈z j` · h, φ〉| < ε.

I So there exists n`,m` subsequences of j` and k` respectively
so that 〈zn`zm` , φ〉 → 〈g · h, φ〉.

I Choosing φ1, .. an ortho-normal basis for L2(σ) and applying a
diagonal argument gives the lemma.
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Details

〈
∑m

j=1 fj ,
∑m

j=1〉 ≤
∑m

j=1〈fj , fj〉+
∑j−1

k=1 2Re
(
〈fj , fk〉

)
≤

m sup{‖f ‖22}+ 2
∑m

j=1
j−1
2j
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