LAB 6-DERIVATIVES CONT'D

MATH 1170

25 SEPTEMBER 2018

In this lab, we'll continue exploring derivatives.

- use R to symbolically compute derivatives for us
- take the derivative of a series
- approximate a function by some other functions

Symbolic derivatives

In previous labs, we used R to approximate ${ }^{1}$ the derivative of a function at various points. R can ${ }^{2}$ also compute derivatives symbolically, which means it can tell us the expression for the derivative of a given function.

Consider some function, say

$$
f(x)=x^{3} .
$$

First, think in your brain what the derivative of this function should be. To have R compute the derivative, we need to tell R what the function is, which we do by
$>f<-\operatorname{expression}\left(x^{\wedge} 3, x^{\prime}\right)$
We use the new command D to find the expression for the derivative. ${ }^{3}$

Use this command by

```
> dfdx <- D(f,'x')
```

Here, we gave the derivative the name 4 dfdx but you can call it whatever you would like!

To see the fruits of our labor, type

```
> print(dfdx)
```

R should print out

```
3*x^2
```

This is hopefully be exactly what we expected!

Question o:

Although computers are quite stupid, this means they excel at stupid, mechanical tasks like taking a derivative. Try having R compute the derivative of some crazy function like

$$
f(x)=\log \left(3 x^{2}+x+4\right) .
$$

[^0]the syntax here is: (your function, and then the variable in quotes)

[^1][^2]
Question 1:

1. What is the derivative of $f(x)=2^{x}$?
2. What is the derivative of the derivative of $f(x)$ (i.e., the second derivative)?
3. What is the derivative of the derivative of the derivative of $f(x)$ (i.e., the third derivative)?
4. What do you think the 47 th derivative of $f(x)$ is?

Question 2:

Writing your own code, create a plot of $f(x)$ from Question 1 with its first, second, and third derivatives. Put all of these on the same figure, in different colors. ${ }^{5}$

As a hint: Do something like the following to "bind" the y values. You may need to adapt this to plot your functions if you gave them a different name.

```
> x <- seq(0, 1, 0.1)
> f<- function(x){2^x}
> matplot(x,cbind(f(x), eval(dfdx), eval(dfdx2)),type="l",
    col=c("blue","red",'green','yellow'),ann="false")
```

where I'm assuming that you named your derivatives previously $d f d x, d f d x 2$ and so on. Also, make sure this is all in one line in your code!

A Series of Functions

Consider ${ }^{6}$ the following list of polynomials:

$$
\begin{aligned}
& p_{0}(x)=1 \\
& p_{1}(x)=1+x \\
& p_{2}(x)=1+x+\frac{x^{2}}{2} \\
& p_{3}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} \\
& p_{4}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}
\end{aligned}
$$

Question 3:

Hopefully there should be a pattern to the list. What do you think $p_{5}(x)$ and $p_{6}(x)$ are?
${ }^{5}$ shades of gray are often a nice choice, where the command is gray (c), where c is a number between 0 and 1 .
${ }^{6}$ completely out of context. don't feel panicked if this seems out of nowhere

Question 4:

Plot the SUM of these functions. That is, plot

$$
f(x)=p_{0}(x)+p_{1}(x)+\cdots+p_{6}(x) .
$$

What function ${ }^{7}$ does this look like?

Question 5:

Take the derivative of the sum $f(x)$ (by hand, or spend an eternity retyping these as expressions to use the D command).

Do you notice a pattern? Plot $f(x)$ and its derivative, $f^{\prime}(x)$.

Question 6:

If the sum $f(x)$ is approximately the function you think it is from Question 4, why does its derivative make sense? That is, what is the derivative of the function you think it is? ${ }^{8}$
${ }^{7}$ it's a famous function!
${ }^{8}$ in case this question is a complete dumpster fire, the function I have in mind is e^{x}

[^0]: ' because a computer doesn't know what $\lim _{h \rightarrow 0}$ means
 ${ }^{2}$ does not always mean should

[^1]: ${ }^{3}$ D takes two arguments: the expression and the differentiation variable, exactly what we defined! how convenient!

[^2]: ${ }^{4}$ because this expression is $\frac{\mathrm{d} f}{\mathrm{~d} x}$ but hopefully this is obvious

