LAB 6 - DERIVATIVES CONT'D MATH 1170 25 SEPTEMBER 2018

In this lab, we'll continue exploring derivatives.

- · use R to symbolically compute derivatives for us
- · take the derivative of a series
- · approximate a function by some other functions

Symbolic derivatives

In previous labs, we used R to **approximate**¹ the derivative of a function at various points. R can ² also compute derivatives symbolically, which means it can tell us the expression for the derivative of a given function.

Consider some function, say

$$f(x) = x^3.$$

First, think in your brain what the derivative of this function should be. To have R compute the derivative, we need to tell R what the function is, which we do by

We use the new command D to find the expression for the derivative.^3 $\ensuremath{\mathsf{D}}$

Use this command by

```
> dfdx <- D(f,'x')</pre>
```

Here, we gave the derivative the name ⁴ dfdx but you can call it whatever you would like!

To see the fruits of our labor, type

> print(dfdx)

R should print out

3*x^2

This is hopefully be exactly what we expected!

Question o:

Although computers are quite stupid, this means they excel at stupid, mechanical tasks like taking a derivative. Try having R compute the derivative of some crazy function like

$$f(x) = \log(3x^2 + x + 4).$$

 1 because a computer doesn't know what $\lim_{\hbar\to 0}$ means 2 does not always mean *should*

the variable in quotes)

the syntax here is: (your function, and then

³ D takes two arguments: the expression and the differentiation variable, exactly what we defined! how convenient!

⁴ because this expression is $\frac{df}{dx}$ but hopefully this is obvious

Question 1:

- 1. What is the derivative of $f(x) = 2^x$?
- 2. What is the derivative of the derivative of *f*(*x*) (i.e., the second derivative)?
- 3. What is the derivative of the derivative of *f*(*x*) (i.e., the third derivative)?
- 4. What do you think the 47th derivative of f(x) is?

Question 2:

Writing your own code, create a plot of f(x) from **Question 1** with its first, second, and third derivatives. Put all of these on the same figure, in different colors.⁵

As a hint: Do something like the following to "bind" the *y* values. You may need to adapt this to plot your functions if you gave them a different name.

where I'm assuming that you named your derivatives previously dfdx, dfdx2 and so on. Also, make sure this is all in one line in your code!

A Series of Functions

Consider⁶ the following list of polynomials:

$$p_0(x) = 1$$

$$p_1(x) = 1 + x$$

$$p_2(x) = 1 + x + \frac{x^2}{2}$$

$$p_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

$$p_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

Question 3:

Hopefully there should be a pattern to the list. What do you think $p_5(x)$ and $p_6(x)$ are?

⁵ shades of gray are often a nice choice, where the command is gray(c), where c is a number between 0 and 1.

⁶ completely out of context. don't feel panicked if this seems out of nowhere

Question 4:

Plot the **SUM** of these functions. That is, plot

$$f(x) = p_0(x) + p_1(x) + \dots + p_6(x).$$

What function7 does this look like?

Question 5:

Take the derivative of the **sum** f(x) (*by hand*, or spend an eternity retyping these as expressions to use the D command).

Do you notice a pattern? Plot f(x) and its derivative, f'(x).

Question 6:

If the **sum** f(x) is approximately the function you think it is from Question 4, why does its derivative make sense? That is, what is the derivative of the function you think it is?⁸

7 it's a famous function!

⁸ in case this question is a complete dumpster fire, the function I have in mind is e^{x}