LAB 5-INTRO DERIVATIVES

MATH 1170

18 SEPTEMBER 2018

In this lab, we'll be begin to explore derivatives. Specifically, we'll

- visualize the derivative as $h \rightarrow 0$
- plot a function and its derivative

Visualizing the Derivative as a Slope

Question 1

Suppose the number of dogs you own satisfies the equation

$$
\begin{equation*}
f(t)=e^{t}+1 \tag{1}
\end{equation*}
$$

Plot this function over the t range 0 to 2 , where t represents the years from current. You should define f as a function called f in R .

Question 2

Recall that we can compute the slope of the secant line of $f(t)$ between the points at $t=a$ and $t=b$ by

$$
\text { slope }=m=\frac{f(b)-f(a)}{b-a}
$$

This is nice, but not the form we need. If we call $b=a+h$ that is, b is a little tiny bit h off from a, then we can rewrite this as ${ }^{1}$

$$
\begin{equation*}
m=\frac{f(a+h)-f(a)}{h} \tag{2}
\end{equation*}
$$

If we're thinking of the line going through $(a, f(a))$ with the slope above, then we can write the equation of the line as ${ }^{2}$

$$
\begin{equation*}
y-f(a)=m(x-a) \tag{3}
\end{equation*}
$$

We'll compute the line through the point $a=1$. Define this and $h=1$. Using (2), compute the slope of this line. The intercept comes from (3), and using these two, we can plot the line, using the commands

```
> m <- (f(a+h)-f(a))/h;
> intercept <- f(a)-a*m;
> abline(intercept,m, col='red', lty=2 )
> points(c(a, a+h), c(f(a), f(a+h)), type='o', col='red')
```

Repeat this for points that are closer and closer. That is, take ${ }^{3}$
${ }^{2}$ using point-slope form, do you remember this?
${ }^{1}$ this should hopefully look familiar

1. $h=.1$
2. $h=.01$
3. $h=.001$

Explain what's going on as $h \rightarrow 0$.

Question 3

What does the slope of this line ${ }^{4}$ represent (in words)?
${ }^{4}$ this is exactly the derivative $f^{\prime}(1)$!

Plotting Derivatives

Question 4

We^{5} can think of the derivative as a function. That is, $g^{\prime}(x)$ is a $\quad{ }^{5}$ including you! thing you put an x into and it spits out a slope defined by

$$
\begin{equation*}
g^{\prime}(x) \quad \stackrel{\text { def }}{=} \quad \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} . \tag{4}
\end{equation*}
$$

Therefore, for any $g(x)$ we can associate its derivative $g^{\prime}(x)$. For this probem, take

$$
\begin{equation*}
g(x)=7 x^{4}+28 x-6 \tag{5}
\end{equation*}
$$

On the site, there is an UNFINISHED code called lab5_plotderiv.r. There are two key things missing:

1. defining the function $g(x)$
2. defining the derivative using (4) using the x and h values already assigned. Call this vector of numbers slope

Modify the code to do the two things listed above and show the resulting plot.

Question 5

From your plot from previous question, what does it mean when the derivative is negative? Positive? Zero?

