LAB 3 - DISCRETE DYNAMICS INTRO
MATH 1170
4 SEPTEMBER 2018

In this lab, we’ll begin to investigate discrete dynamical systems. By the end of
the lab, you should be able to

+ Define a function in R
* Use R to model a discrete dynamical system
+ Implement cobwebbing in R

» Learn about “for" loops

Defining functions

Remember week 1, when we learned how to plot the function y =
esin(¥~2)7 Today, we're going to learn a shortcut to define functions
in R using the function command. Instead of just defining an output
vector y, we will define the actual function which can be used to give
us multiple outputs. Let’s call this function CrazyFunction.

> CrazyFunction <- function(x){ exp(sin(x"~2-2)) }

Let’s talk through the pieces of this definition. In the parentheses
after the word function, we put our input which for now I have called

x”. Inside the curly brackets we put the formula for what we are
going to do to the input to get output. In other words, the general

recipe (not a command you type in!) for defining a function is* " Note this means that you can call your
variable anything you'd like. For instance,
functionName <- function(variableName){ stuff involving this is a perfectly equivalent declaration of

the same function using meow as the input
variable: CrazyFunction <- function(x
){exp(sin(meow™2-2))}

variable }

Why is this useful? Well now the function behaves like a function
should! We can, for instance, put in x = 1 in the console, we’ll get out

> CrazyFunction(1)

Function definitions make evaluating functions for given values
much easier and therefore hopefully make your life less stressful.
We can also easily define a set of input and output vectors like we
did before.

> xvals <- seq(0,10,0.01)
> yvals <- CrazyFunction(xvals)
> plot(xvals, yvals , type="1")

We don’t even need to bother assigning yvals but rather just call our
command inside the plot command like so.

2 MATH 1170

> plot(xvals, CrazyFunction(xvals), type="1")

In general, defining functions is useful because we're likely to use
them more than once and R is good at remembering them.

Question 1:
Plot the linear function®* y = 2x — 7 between x = 0 and x = 10 by
defining a function.

Modeling Multiple Doses of Antibiotic Treatment

Biology background

Physicians treat many patients for otitis media, commonly known

as an ear infection. When the middle ear becomes infected with
bacteria (such asStreptococcus pneumonia or Pseudomona aeruginosa)

it causes an infection known as otitis media, or more colloquilally,

an ear infection. The most commonly prescribed treatment for this
type of infection is an antibiotic such as amoxicillin. Amoxicillin
functions by inhibiting the synthesis of the cell wall in bacteria which
ultimately leads to its demise.3

Modeling

Let M; be the amount of Amoxicillin (in mg) in the patient’s sys-
tem at time t. Suppose that the doctor prescribes a patient to take
D mg of Amoxicillin every 12 hours for ten days. During a 12 hour
period your body metabolizes half the medication that was in your
body after the previous dose. We will model this with a discrete time
dynamical system.

In this case, the updating function is

Mpy1 = 05M; + D

We will now write a new script (using Rstudio) to see how much
antibiotic is in one’s body after each dose is taken. Be sure to save
your script. You can title it anything you would like.

Although you could compute the values manually, we will use
our handy function definition instead. First define D and then the
updating function, which I have called update().

> D <- 250

> Update <- function(m){.5*m+D}

2 or really, any function you'd like. just make it
clear which you're plotting

i) A

Inflammation and
fluid accumulation
in the middle ear

\L > Eustachian tube
(narrowed)

3 you really don’t have to know any of this

4 maybe set the mood with mathisfun.r,
but this might be confusing later

LAB 3 - DISCRETE DYNAMICS INTRO 3

Next, we must start updating the value for each time step. >

If the doctor prescribes antibiotic treatment for 7 days, how many
times do we need to update the value? Define a list that is the correct
length for number of updates we want.

> M <- array(0,7)

What does this command do? It is a placholder, where it just makes
an array (list) of values stored in M that we’ll fill in. 6

We also need a starting value - meaning the amount of antibiotic
that is initially in one’s body before treatment begins. Define this
starting value as M[1]. The brackets tell us the value will be placed in
the first position of the list M that we just created. 7

What is a reasonable starting value? Be sure you can justify your
choice of this M[1]. Discuss this choice with someone sitting next to
you and make sure you agree.

Now, let’s update each step, as follows:

> M[2] <- Update(M[1])
> M[3] <- Update(M[2])
> M[4] <- Update(M[3])

Continue adding more time steps to your script until you have
reached the final dose in the treatment.

When you are done updating the function, we need to look at
the values you have just computed. We can do this using the print
function.

> print(M)

Now that you have a script written, it is easy to change the dose.
Simply redefine D and rerun your code.

Question 2:

What is the final amount of Amoxicillin in the bloodstream after
7 days of treatment if D = 100? 250? 500? Does there seem to be any
pattern?

Cobwebbing

Cobwebbing is (usually) a nice way to visualize what is happening
when we use an updating function. Each output becomes the in-
put in the next time step which can be visualized as your current y
value (output) becoming the next x value (input). This is the same
as returning to the line y = x (diagonal) after each time you use the
updating function.

There is code provided on my website which will create cobweb
plots of the updating function. Please copy and paste it into a new

5 an important thing to note here is that ¢ isn’t
actually time, but just indexes when we’ll do
stuff, t = 0,t = 1,t = 2,.... the 12 hours
information is a red herring

& we initialized all the values in M to 0 but
this doesn’t matter since we’ll override them

7 an annoying thing worth noting is that many
programming languages start with 0 as the
first index

4 MATH 1170

o

script and save it as ‘‘cobweb.R" or just save it somewhere under this
game.

Once you have it saved 8, run this script by typing ® and find it using the bottom right hand

corner, and then set the working directory
> source("cobweb.r")

Once you have run the script, you will have defined a function called

cobweb () that works only for the previously discussed model!® The % if you want to use this for another model,
recipe for calling this function is talk to me and I'll coach you through modify-
ing it

cobweb (D, steps)

That is, the first argument of cobweb specifies the dose, D. The sec-
ond argument of cobweb specifies the number of time steps. In the
console/terminal (not in your script), type the following:

> cobweb(250,10)

You will see a plot come up where the starting value, M0, is shown
with a black dot and the ending value, M10, is shown with a red dot.
The blue points represent the points (MO0, M1), (M1, M2), and so on.
The green lines show the cobwebbing. In the console the values of
MO0, M1, M2, ..., M10 are also printed.

Question 3:
Create three cobwebbing plots (one each for D=100, 250 and 500)
to illustrate each of the scenarios from Question 2.

Modeling Fish Populations

For Loops

Now, we’ll consider a new model: a newt population.
Every week, you measure that the newts in your yard have re-

produced, so that there are 2% more newts added to the current
population. *°
. . '%they have better things to do!
Despite being cute, newts are not very smart. As a consequence,
a number of newts accidentally wander into the road and are extin-
guished by the passing-by cars. For the sake of science, you measure
this to be roughly H = 50 newts per week. Let N; be the number
of newts in the population in a given week. We write the model as

follows: 11 " discuss with your neighbor (or self) why
Nt+l = 1.02N; — 50 this makes sense

Suppose we measure that there are initially 1000 newts in the popu-
lation. We want to know how many newts will be in the population
in a year - in other words, in 52 weeks. Let’s write a script that can
calculate this for us. Again, we initialize an empty array and assign
our necessary variables

LAB 3 - DISCRETE DYNAMICS INTRO 5§

> N<-array(0,52)
> H<-50
> N[1]<-1000

>Update = function(n){l1.02%n-H}

> N[2] <- Update(N[1])
> N[3] <- Update(N[2])
> N[4] <- Update(N[3])

I didn’t want to write this out for all 52 weeks. You don’t don’t
want to do this either.” Programming is often about being creatively 2| hope
lazy. Here, we can be lazy by using a new tool: a for loop. Note that
there is a natural "index" for where we are in the process. That is, at
the 2nd step, we’re doing N[2]<-Update(N[1]) and generally at the
ith step, we're doing N[1] <- Update(N[i-1]). Translating this into
programming, we get a for loop

> for(i in seq(2,52)) N[i]<-Update(N[i-1])

The above line means “for each i from 2 to 52 let NJ[i] be update(N[i-
1])". This is exactly what we want!

Question 4:

How many newts are in the population after one year? Does this
number make sense? Why or why not? How long will it take the
newt population to go extinct?

Question 5:

In your disgust at the decline of newt populations, you create
a safe crosswalk for them to skitter across the road, reducing the
number of newts run over per week to H = 20. With this change,

how many newt are in the population after one year?

	Defining functions
	Modeling Multiple Doses of Antibiotic Treatment
	Cobwebbing
	Modeling Fish Populations

