LAB 13 - STABILITY OF EQUILIBRIA MATH 1170 NOVEMBER 28 2017

In this lab, we'll explore the stability of an equilibrium of a differential equation. Specificially, we'll

- 1. use an infection model as a case study
- 2. explore how equilibria (and their stability) change due to parameter changes
- 3. etablish basic ideas in epidemiology like a basic reproduction number (R_0) .

Setup

In class, you talked about an infection model and here we'll explore a slightly different version. Consider a population of N people¹ where some infection is spreading. Denote the *average*² number of people infected at time t by I(t). Then, I(t) satisfies the differential equation

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \alpha I(N-I) - \mu I,$$

where remember this comes from the idea that the rate at which the infected individuals change is

per capita rate at which suceptive individual is infected = αI

and the number of suceptible individuals is those that aren't infected

succeptible individuals = total – infected = N - I

leading to the first term. That is, α basically corresponds to the infection "rate" normalized per-person. The parameter μ is similiar. It is the rate at which people recover.³

In this lab, we're going to fix $\alpha = .1$ and $\mu = 0.5$, and explore how the equilibria changes as *N* changes.

Simulations

I've provided an unfinished code ⁴ lab13_infection.r which gives you a function called infect_sim(N). So an example usage would be

```
> infect_sim(4)
```

which would simulate the infection for N = 4 people.

Question 1

Complete the code using Euler's method as the true solution approximation.

1 this class, maybe?

² we use the "average" here because it's often not possible to predict *exactly* how many people are infected, but we can still get a rough idea

³ so this wouldn't be appropriate for say, a zombie model where nobody recovers

⁴ you only have to do source('lab13_infection.r') once

Question 2

Set *N* to be 3, 4, 5, 6, 7. Describe the plot by answering the following questions. What are the equilibria in this case? What is their stability? Include your plots with reasonable size for clean presentation.

Question 3

Afetring trying out different values of N. When do you see a dramatic change in behavior? Explain biologically why this special Nmight exist. This is called a "critical community size", a well studied quantity in epidemiology⁵.

Question 4

Change yoru code so that the function $infect_sim(N)$ will plot out 10 initial conditions evenly ranged from 0 to N. Then include the plot with the case N = 10.

Question 5

Recall that the stability theorem says that an equilibrium x^* is stable for a differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$$
 if and only if $f'(x^*) < 0$

and unstable otherwise.

Here, we're interested in the "disease-free state" equilibrium $I^* =$

- 0. We want to know when the disease free state is stable or unstable.
- 1. Use the stability theorem to derive the condition for the disease free state to be stable.
- For α = .1, μ = .5, what is the condition on *N* so that the disease-free (*I*^{*} = 0) is stable?

Question 6

The quantity in the previous question is often called R_0 :

$$\frac{N\alpha}{\mu} = R_0$$

It's called the **basic reproduction number** and is a quantity of huge interest in epidemiology. We can think of it as: *on average* how many *other* people each person infected infects. ⁶

With this word story, what is R_0 for Question 5? Why does the condition you derived from Question 4 make sense?

⁶ here's a fun clip from the film *Contagion* that talks about R_0 of different diseases https://www.youtube.com/watch?v=VrATME_EB9M

⁵ fun fact: measles has one of the highest known critical community size at about 250-300 thousand people