LAB 12-DIFFERENTIAL EQUATIONS

MATH 1170

OCTOBER 30, 2017

In this lab, we'll explore differential equations a bit more in the context of a
Newton's Law of cooling problem. Specifically, we'll

1. verify solutions to a differential equation
2. understand long term behavior of the solution
3. use Euler's method to approximate a solution

Setup

In this problem, we'll model the temperature of the temperature of the turkey and try to figure out if it will be too cold to bring to a Thanksgiving party.

We'll assume the temperature of the turkey (which we'll call P) at t minutes after taking it out of the oven can be modeled by Newton's Law of Cooling, which says, the temperature P satisfies

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\alpha(A-P),
$$

where A is the ambient temperature, which we'll assume is a brisk 50 degrees Fahrenheit and α is a parameter relating to how quickly the turkey cools ${ }^{1}$, which we'll say is $\alpha=0.1$.

Question 1 As with most differential equations in the class, an initial condition is necessary. Somewhere in the previous information I've hidden the appropriate initial condition, so what is $P(0)$?

Question 2 Although we won't solve the differential equation yet, is $\mathrm{d} P / \mathrm{d} t$ positive or negative? That is, is $P>A$ or $P<A$? Why does this make sense?

Question 3

Verify that the following is indeed a solution to our differential equation

$$
P(t)=350 e^{-0.1 t}+50 .
$$

Question 4

Now that we're sure ${ }^{2}$ the previous question gave us a solution to the differential equation, we can learn things from it.

What happens to the temperature of the turkey as $t \rightarrow \infty$? Why does this make sense?

Make a plot of the function that demonstrates this behavior.
${ }^{1}$ often called a rate constant. note it has units 1 /time, also known as a rate

[^0]
Euler's Method

Although a previous part gave the solution to this differential equation, its not always the case that we can write something like this down and therefore want a way of approximating this. One way of doing so is Euler's method. Here I'll give a brief reminder of what Euler's method says.

Suppose we have some differential equation that looks like

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=f(P), \quad P(0)=P_{0} .
$$

We can then use a tangent line approximation to the true solution $P(t)$ to approximate the value at some time close to our initial point. Say, our timesteps are of size Δt, then the first point we approximate would then be ${ }^{3}$

$$
P(\Delta t) \approx \hat{P}(\Delta t)=P(0)+P^{\prime}(0) \Delta t
$$

but note that we know $P^{\prime}=f$, so we know everything in this equation! How exciting. Repeating this procedure, calling $t_{\text {new }}=t_{\text {old }}+\Delta t$, we can then update using the same tangent line idea

$$
\hat{P}_{\text {new }}=\hat{P}_{\text {old }}+P^{\prime}\left(\hat{P}_{\text {old }}\right) \Delta t .
$$

Question 5

Complete the code lab12_eulers.r and show the resulting produced by utilizing Euler's method for this problem. Take timesteps of $d t=5$ minutes and go until $t=30$ minutes. How good of an approximation is this?

Question 6 Try a smaller value of $d t$ of your choice. Does the approximation get better or worse? Why?

Question 7 Complete question 32 in section 4.2 in your textbook.

[^1]
[^0]: ${ }^{2}$ or at least pretty sure

[^1]: ${ }^{3}$ convince yourself this is exactly the tangent line approximation at $t=0$

