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In this lab, we’ll explore differential equations a bit more in the context of a
Newton’s Law of cooling problem. Specifically, we’ll

1. verify solutions to a differential equation

2. understand long term behavior of the solution

3. use Euler’s method to approximate a solution

Setup

In this problem, we’ll model the temperature of the temperature of
the turkey and try to figure out if it will be too cold to bring to a
Thanksgiving party.

We’ll assume the temperature of the turkey (which we’ll call P) at
t minutes after taking it out of the oven can be modeled by Newton’s
Law of Cooling, which says, the temperature P satisfies

dP
dt

= α(A− P),

where A is the ambient temperature, which we’ll assume is a brisk 50
degrees Fahrenheit and α is a parameter relating to how quickly the
turkey cools1, which we’ll say is α = 0.1. 1 often called a rate constant. note it has

units 1/time, also known as a rate

Question 1 As with most differential equations in the class, an
initial condition is necessary. Somewhere in the previous information
I’ve hidden the appropriate initial condition, so what is P(0)?

Question 2 Although we won’t solve the differential equation
yet, is dP/dt positive or negative? That is, is P > A or P < A? Why
does this make sense?

Question 3
Verify that the following is indeed a solution to our differential

equation

P(t) = 350e−0.1t + 50.

Question 4
Now that we’re sure2 the previous question gave us a solution to 2 or at least pretty sure

the differential equation, we can learn things from it.
What happens to the temperature of the turkey as t → ∞? Why

does this make sense?
Make a plot of the function that demonstrates this behavior.
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Euler’s Method

Although a previous part gave the solution to this differential equa-
tion, its not always the case that we can write something like this
down and therefore want a way of approximating this. One way of
doing so is Euler’s method. Here I’ll give a brief reminder of what
Euler’s method says.

Suppose we have some differential equation that looks like

dP
dt

= f (P), P(0) = P0.

We can then use a tangent line approximation to the true solution
P(t) to approximate the value at some time close to our initial point.
Say, our timesteps are of size ∆t, then the first point we approximate
would then be3 3 convince yourself this is exactly the tangent

line approximation at t = 0

P(∆t) ≈ P̂(∆t) = P(0) + P′(0)∆t,

but note that we know P′ = f , so we know everything in this equa-
tion! How exciting. Repeating this procedure, calling tnew = told + ∆t,
we can then update using the same tangent line idea

P̂new = P̂old + P′(P̂old)∆t.

Question 5
Complete the code lab12_eulers.r and show the resulting pro-

duced by utilizing Euler’s method for this problem. Take timesteps
of dt = 5 minutes and go until t = 30 minutes. How good of an
approximation is this?

Question 6 Try a smaller value of dt of your choice. Does the
approximation get better or worse? Why?

Question 7 Complete question 32 in section 4.2 in your text-
book.
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