Answer all questions below. All questions are worth 1 point except where otherwise noted. No cell phones, calculators, or notes are allowed during the exam. If you are stuck on a problem, skip it and come back to it later. The exam will last 120 minutes.

Name: _____ UID: ____

Write all your answers in the answer booklet provided.

True or False

Decide whether each statement is true or false. Worth $\frac{1}{2}$ point each.

- 1. The point $(\frac{\sqrt{3}}{2}, -\frac{1}{2})$ lies on the unit circle.
- 2. If S is the set of solutions to the equation $x^3 + y^3 = xy$, then $(-1, 1) \in S$.
- 3. The planar transformation $A_{(2,3)}$ shifts up by 3 and right by 2.
- 4. The matrix $\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$ rotates the plane clockwise by an angle of $\frac{\pi}{4}$.
- 5. If θ is any real number, then $\cos(-\theta) = \cos(\theta)$.
- 6. If θ is any real number, then $\sin(-\theta) = \sin(\theta)$.
- 7. The equation $x^2 e^x = (x+1)e^x$, with domain \mathbb{R} is equivalent to the equation $x^2 = x + 1$.
- 8. The equation $\log_{10}(x)^2 = 4$, with domain $(0, \infty)$, is equivalent to the equation $\log_{10}(x) = 2$.

Linear Algebra

9. Write the resulting vector as a row vector: $\begin{pmatrix} 3 & -4 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$

$$\begin{pmatrix} 0 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 5 \end{pmatrix} =$$

10. Find the product: $\begin{pmatrix}
3 & 0 \\
-2 & -1
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & -4
\end{pmatrix}$

11. Find the norm of the vector (1,7).

Conics and Solutions of Equations in Two Variables

12. Give the equation for a line of slope -1, through the point (2, 4)

13. Give the equation for the line of slope 4 through the origin.

14. Give the equation for the unit circle.

15. Give the equation for the circle of radius 3 centered at the origin.

16. (2 points) Give the equation for the circle of radius 4 centered at the point (-1, 2).

17. (2 points) Give the equation for the ellipse obtained by starting with the unit circle, then scaling the x-axis by $\frac{1}{3}$ and the y-axis by 3.

- 18. Draw the set of solutions to the equation xy = 1.
- 19. Draw the set of solutions to the equation $y = x^2$.
- 20. Draw the set of solutions to the equation $x^2 + y^2 = 9$.
- 21. Draw the set of solutions to the equation $\frac{x^2}{9} + \frac{y^2}{4} = 1$
- 22. Draw the set of solutions to the equation (x y)(x + y) = 0.
- 23. Draw the set of solutions to the equation $(x+2)^2 + (y-1)^2 = 0$.
- 24. Let *H* be the set of solutions to xy = 1 (from #18). $R_{-\frac{\pi}{4}}$ is the rotation of the plane by angle $-\frac{\pi}{4}$. Draw $R_{-\frac{\pi}{4}}(H)$.
- 25. Let P be the set of solutions to $y = x^2$ (from #19). Draw P shifted left by 2 and up by 2.

Trigonometry

26. What is the distance from the point (3,3) to the point (-1,2)?

27. Find the length of the unlabeled side of the triangle below.

28. (3 points) Find $\sin(\theta)$, $\cos(\theta)$, $\tan(\theta)$ for the angle θ shown below.

29. If $\cos(\theta) = \frac{1}{4}$, and $\sin(\theta) > 0$, what is $\sin(\theta)$?

- 30. Find $\sec(-\frac{\pi}{3})$.
- 31. Find $\csc(\frac{\pi}{4})$.
- 32. Find $\tan(\frac{\pi}{3})$.
- 33. Find $\operatorname{arccos}(\frac{\sqrt{3}}{2})$.
- 34. Find $\operatorname{arcsin}(\frac{1}{2})$.
- 35. Find $\arctan(-1)$.

For #36-44, graph the functions listed below.

36.	$\cos(x)$	39. $\sec(x)$	42.	$\arccos(x)$
37.	$\sin(x)$	40. $\csc(x)$	43.	$\arcsin(x)$
38.	$\tan(x)$	41. $\cot(x)$	44.	$\arctan(x)$

Match the functions with their graphs.

Page 8

Match the functions with their graphs.

59. (2 points) Write the matrix that rotates the plane counter clockwise by an angle of $\frac{\pi}{3}$.

60. If $\sin(\theta) = \frac{2}{3}$ and $\cos(\theta) = -\frac{\sqrt{5}}{3}$, find $\sin(2\theta)$. (Hint: $\sin(2\theta) = \sin(\theta + \theta)$.)

Equations in One Variable

Questions #61-66 can be found in your answer booklet.

Name:					UID:		
1							
2			10.				
3			11.				
4			12.				
5			13.				
6			14.				
7			15.				
8			16.				
9			17.				
********	***********	*********	********	**********	**********	*******	*****
18.			19.				

21.

_			
		1	
		1	
		1	
-			

22.

25.

45.	 53
46.	 54
47.	 55
48.	 56
49.	 57
50.	 58
51.	 59
52.	 60

Find all solutions to the following equations. If there are no solutions, write one sentence explaining why.

61. $\log_{10}(x-2)e^x = 2\log_{10}(x-2)$

62. $x^2 + 4 = 0$

63. $\log_2(x+2) = \log_2(x-1) - \log_2(x+1)$

64. $2(e^x)^2 - 3e^x + 1 = 0$

65. $\log_3(1-x) = 2 - \log_3(x-4)$

66. $\log_e(x-1)^2 = 9$