Name: Key UID:

1. A 13. (3,5)

2. E 14. (-3, z)

3. G 15. (7,11)

4. D 16. 2

5. A (-2,-3) (6 -12)

 $\begin{array}{c} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \begin{array}{c} 17. & \begin{array}{c} 17. & \begin{array}{c} 17. & \end{array} \\ 18. & \begin{array}{c} 1 & \end{array} \\ \end{array} \end{array}$

7. $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$ 19. $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 \end{pmatrix}$ (2 pts)

9. (3,6) 22. $(-\infty, 0)$

10. (3,-1) 23. \(\mathbb{R}-\{0\}\)

11. (-10,15) R

12. (3, -1)

The remaining questions are worth 2 points. Solve the equations in the space provided below each question.

25. $2\log_9(x)^2 + \log_9(x) - 1 = 0$ (Write your answers to this problem as rational numbers in standard form.)

$$\log_{q}(x) = \frac{-1 + \sqrt{1 + 4(2)(1)}}{4} = \frac{-1 + 3}{4} = \frac{1}{2}$$
 or $\log_{q}(x) = -1$

$$x = 9^{1/2} = 3$$
 $x = 9^{-1} = \frac{1}{9}$

$$\chi = 3, \chi = \frac{1}{9}$$

26.
$$e^{x^2-100}+1=0$$

$$e^{\chi^2-100}=-1$$

No solutions because exponentials can't be negative.

$$27. \ \sqrt{5x^2 + 2x - 1} = 2$$

$$5x^2+2x-1=4$$

$$5x^2+2x-5=0$$

$$b^2 - 4ac = 4 - 4(5)(-5) = 104$$

$$x = \frac{-2 + \sqrt{104}}{10}$$
 $x = \frac{-2 - \sqrt{104}}{10}$

28. $x \log_e(3x - 2) = x$ where $x > \frac{2}{3}$.

$$\log_e(3x-2)=1$$

$$3x-2=e^{1}$$

$$\chi = \frac{e+2}{3}$$

et2 > 3, so et2 is inthe domain.

Answer all questions below. All questions are worth 1 point except where otherwise noted. No cell phones, calculators, or notes are allowed during the exam. If you are stuck on a problem, skip it and come back to it later.

Name:		HID:	
TARRETO.		- UID:	_

Write your answers to #1-24 on the answer sheet provided.

Planar Transformations

For #1-4 match each planar transformation with its geometric interpretation.

1.
$$\begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$

$$_{2.}$$
 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\boldsymbol{\mathsf{E}}$

3.
$$A_{(4,2)}$$
 G

4.
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

- A.) Scale x-coordinate by 4, y-coordinate by 2.
- B.) Scale x-coordinate by 2, y-coordinate by 4.
- C.) Flip over x-axis.
- D.) Flip over y-axis.
- E.) Flip over y = x line.
- F.) Moves points right 2, up 4.
- G.) Moves points right 4, up 2.
- H.) Does nothing.

For #5-8, give the inverse of the planar transformation.

$$6. \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

7.
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{pmatrix}$

8.
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Matrices and Vectors

For #9-15, find the resulting vector and write it as a row vector.

- 9. (6,2)+(-3,4)(3,6)
- 10. $\begin{pmatrix} 2 \\ 4 \end{pmatrix} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$
- 11. 5(-2,3) $\begin{pmatrix} -\log \\ 15 \end{pmatrix}$
- 12. $A_{(1,3)}(2,-4) = (3,-1)$
- 13. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ 5 \end{pmatrix}$
- 14. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$
- 15. $\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -2+9 \\ -4+15 \end{pmatrix} = \begin{pmatrix} 7 \\ 11 \end{pmatrix}$
- 16. Compute $p_X(2, -4)$

17. Find the product:
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -2 & 4 \\ 4 & -8 \end{pmatrix}$$

$$\begin{pmatrix} -2+8 & 4-16 \\ -6+16 & |2-32 \end{pmatrix} = \begin{pmatrix} 6 & -12 \\ 10 & -20 \end{pmatrix}$$

18. Compute the determinant:
$$\det \begin{pmatrix} 3 & -1 \\ 2 & -\frac{1}{3} \end{pmatrix}$$

$$3 \cdot \left(\frac{-1}{3}\right) - (2)(-1)$$

19. (2 points) Find the inverse of
$$\begin{pmatrix} 0 & 1 \\ -2 & 1 \end{pmatrix}$$
.

$$\frac{1}{2} \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 \end{pmatrix}$$

Equations in One Variable

Find the implied domain of the following equations.

$$20. \ x^2 - 3x + 3 = 0$$

$$21. \ \sqrt{x} + 5 = \frac{1}{x + 17}$$

22.
$$e^{x^2-5x+2} = \log_{10}(10-x)$$

23.
$$\log_e(x^2) + 5 = x^5 + 4x + 1$$

24.
$$e^{2x+5} = -10$$