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Abstract

For wave propagation phenomena, the limiting
amplitude principle (LAP) holds if the time-har-
monic regime represents the large time asymp-
totic behavior of the solution of the evolution
problem with a time-harmonic excitation. Con-
sidering a two-layered medium composed of a di-
electric material and a Drude metamaterial sep-
arated by a plane interface, we prove that the
LAP holds except for a critical situation related
to a surface resonance phenomenon.
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1 Introduction

In the frequency domain, the permittivity and
permeability of a non-dissipative dispersive ma-
terial ε(ω) and µ(ω) are real-valued functions of
the frequency ω. For metamaterials, these coef-
ficients may become negative in particular fre-
quency ranges, which raises theoretical and nu-
merical difficulties. In [1], the authors proved
that for a transmission problem between a di-
electric material and a metamaterial separated
by a smooth interface, the time-harmonic prob-
lem is well-posed except when both ratios of ε
and µ across the interface are equal to −1 (which
is the case of the “perfect lens” [3]). Neverthe-
less, the associated time-dependent problem re-
mains well-posed. What is the link between both
problems, in particular when the harmonic prob-
lem is ill-posed? We answer here the question in
the case of a planar transmission problem which
involves a Drude metamaterial.

2 Formulation of the problem

We consider a two-layered medium composed of
a standard dielectric material and a Drude ma-
terial, both homogeneous and non-dissipative,
which fill respectively the half planes R3

− = {x =

(x, y, z) ∈ R3 | x < 0} and R3
+ = {x = (x, y, z) ∈

R3 | x > 0}. (ex, ey, ez) will refer to the canon-
ical basis of R3. We denote by E and H the
electric and magnetic fields and by D and B the
electric and magnetic inductions. In the pres-
ence of a source current density Js, the evolu-
tion of (E,D,H,B) is governed by Maxwell’s
equations:

∂tD −CurlH = −Js

∂tB + CurlE = 0,

(where the usual transmission conditions at the
interface x = 0 are implicitly understood). These
equations must be supplemented by the consti-
tutive laws of each material. In the dielectric
material, they are simply expressed by

D = ε0 E and B = µ0 H,

for two positive constants ε0 and µ0. In a dis-
persive media, these laws involve two additional
unknowns, the electric and magnetic polariza-
tions P and M :

D = ε0E + P and B = µ0H + M .

For the Drude model, the fields P and M are
related to E and H through

∂tP = J and ∂tJ = ε0 Ω2
e E

∂tM = K and ∂tK = µ0 Ω2
mH,

where Ωe and Ωm are positive parameters. By
eliminating D, B, P and M in the above equa-
tions, we obtain

(P )


ε0 ∂tE −CurlH + Π J = −Js in R3,
µ0 ∂tH + CurlE + Π K = 0 in R3,
∂tJ = ε0 Ω2

e E in R3
+,

∂tK = µ0 Ω2
mH in R3

+,

where Π denotes the operator of extension by 0
of a vectorial field defined on R3

+ to R3.
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When looking for time-harmonic solutions of
(P ): (E(x),H(x),J (x),K(x)) e− iωt for a peri-
odic current density Js(x)e− iωt, we can elimi-
nate J (x) and K(x). In the half-plane R3

+ filled
by the Drude material, we obtain

i ωε(ω)E + CurlH = J s

−i ωµ(ω)H + CurlE = 0, where

ε(ω) = ε0

(
1− Ω2

e

ω2

)
and µ(ω) = µ0

(
1− Ω2

m

ω2

)
.

In the half-plane R3
− filled by the dielectric ma-

terial, we obtain the same equations with ε(ω)
and µ(ω) replaced by ε0 and µ0. Note that in
the Drude material, ε(ω) and µ(ω) become neg-
ative at low frequencies (which justifies the word
“metamaterial”). Moreover, both ratios ε(ω)/ε0
and µ(ω)/µ0 are simultaneously equal to −1 at
the same frequency if and only if Ωe = Ωm (:=
Ω∗) and ω = ±Ω∗/

√
2 (:= ±ω∗), where ω∗ is

called the plasmonic frequency.

3 Main results

We are interested in the long-time behavior of
the solution of the transverse magnetic (TM)
version of (P ) for a time-harmonic source term
Js(x, t) = Js(x, y) e− iωtez with ω > 0 and zero
initial conditions. In this case, we have E =
(0, 0, Ez) and H = (Hx, Hy, 0) where Ez, Hx

and Hy do not depend on z, as well as the same
properties for J and K. We express below our
main result in terms of the electrical field Ez but
the same results hold for the other unknowns
Hx, Hy, Jz,Kx,Ky.

Theorem 1 (i) If Ωe 6= Ωm, the LAP holds at
all frequencies, in the sense that for all ω > 0,
there exists a function Ez (related to the time-
harmonic problem) such that

Ez(·, t) = Ez(·) e−i ωt + o(1) as t→ +∞,

where o(1) stands for a function which tends to
0 in L2

loc(R2).
(ii) If Ωe = Ωm, the LAP never holds. More

precisely, with the same notations as above,
• if ω 6= ω∗, then there exists functions E∗z,± and
Ez such that

Ez(·, t) =
∑
±
E∗z,±(·) e∓iω∗ t + Ez(·) e−iωt + o(1);

• If ω = ω∗, then there exists functions E∗z and
Ez,± such that

Ez(·, t) = tE∗z (·) e−iω∗t+
∑
±
Ez,±(·) e∓iω∗t+o(1).

4 Method of Analysis

The (very technical) proof follows from standard
arguments (see, e.g., [4]). The main difficulty
here is related to the dependence of ε(ω) and
µ(ω) with respect to ω (see [2] for details). We
first rewrite the original problem (P ) as an ab-
stract Schrödinger equation

dU

dt
+ iAU = F e−i ωt with U(0) = 0,

where A is an unbounded self-adjoint operator
in an appropriate Hilbert space H. The key of
the analysis is the spectral theory of the opera-
tor A. This permits a quasi-explicit representa-
tion of the solution via the (generalized) diago-
nalization of A. This is achieved by combining
a partial Fourier transform along the interface
with Sturm-Liouville type techniques in the or-
thogonal direction. For Ωe = Ωm, the resonance
phenomenon is linked to the fact that A admits
at the plasmonic frequency ω∗ an eigenvalue of
infinite multiplicity.
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